cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A341929 Bisection of the numerators of the convergents of cf (1,1,6,1,6,1,...,6,1).

Original entry on oeis.org

1, 2, 15, 118, 929, 7314, 57583, 453350, 3569217, 28100386, 221233871, 1741770582, 13712930785, 107961675698, 849980474799, 6691882122694, 52685076506753, 414788729931330, 3265624762943887, 25710209373619766, 202416050226014241, 1593618192434494162, 12546529489249939055, 98778617721565018278
Offset: 0

Views

Author

John O. Oladokun, Feb 23 2021

Keywords

Comments

15*a(n)^2 - 11 is a square for all terms.
x = a(n) and y = a(n+1) satisfy the equation x^2 + y^2 - 8*x*y = -11.
x = a(n) and y = a(n+2) satisfy x^2 + y^2 - 62*x*y = -704.

Examples

			a(3) = 8*15 - 2 = 118.
		

Crossrefs

After a(0), bisection of A237262.
Cf. A341927.

Programs

  • Mathematica
    LinearRecurrence [{8, -1}, {1,2}, 15]
  • PARI
    my(p=Mod('x,'x^2-8*'x+1)); a(n) = subst(lift(p^n),'x,2); \\ Kevin Ryde, Feb 27 2021

Formula

a(n) = 8*a(n-1) - a(n-2) for n >= 2.
a(n) = A237262(2*n) for n >= 1.
G.f.: (1 - 6*x)/(1 - 8*x + x^2). - Stefano Spezia, Mar 01 2021