A342061 Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 3, 8, 3, 1; 1, 4, 16, 16, 4, 1; 1, 5, 38, 63, 38, 5, 1; 1, 7, 72, 218, 218, 72, 7, 1; 1, 8, 134, 622, 1075, 622, 134, 8, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 rows)
- Timothy R. Walsh, Efficient enumeration of sensed planar maps, Discrete Math. 293 (2005), no. 1-3, 263--289. MR2136069 (2006b:05062).
Programs
-
PARI
\\ See section 4 of Walsh reference. T(n)={ my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!)))); my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]); my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]); my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]); my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1])); vector(n, n, vector(n, i, my(j=n+1-i); B[i,j] + (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j))) + sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) ))) )/(2*n+2)); } { my(A=T(10)); for(n=1, #A, print(A[n])) }
Formula
T(n,k) = T(n, n+2-k).
Comments