cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342061 Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2

Views

Author

Andrew Howroyd, Mar 30 2021

Keywords

Comments

The number of faces is n + 2 - k.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,   1;
  1, 2,   2,   1;
  1, 3,   8,   3,    1;
  1, 4,  16,  16,    4,   1;
  1, 5,  38,  63,   38,   5,   1;
  1, 7,  72, 218,  218,  72,   7, 1;
  1, 8, 134, 622, 1075, 622, 134, 8, 1;
  ...
		

Crossrefs

Column k=3 is A001399(n-3).
Row sums are A006402.
Cf. A082680 (rooted), A239893, A342059.

Programs

  • PARI
    \\ See section 4 of Walsh reference.
    T(n)={
      my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
      my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]);
      my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]);
      my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]);
      my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1]));
      vector(n, n, vector(n, i, my(j=n+1-i); B[i,j]
        + (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j)))
        + sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
       )/(2*n+2));
    }
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

Formula

T(n,k) = T(n, n+2-k).