A342410 The binary expansion of a(n) corresponds to that of n where all the 1's have been replaced by 0's except in the last run of 1's.
0, 1, 2, 3, 4, 1, 6, 7, 8, 1, 2, 3, 12, 1, 14, 15, 16, 1, 2, 3, 4, 1, 6, 7, 24, 1, 2, 3, 28, 1, 30, 31, 32, 1, 2, 3, 4, 1, 6, 7, 8, 1, 2, 3, 12, 1, 14, 15, 48, 1, 2, 3, 4, 1, 6, 7, 56, 1, 2, 3, 60, 1, 62, 63, 64, 1, 2, 3, 4, 1, 6, 7, 8, 1, 2, 3, 12, 1, 14, 15
Offset: 0
Examples
The first terms, alongside their binary expansion, are: n a(n) bin(n) bin(a(n)) -- ---- ------ --------- 0 0 0 0 1 1 1 1 2 2 10 10 3 3 11 11 4 4 100 100 5 1 101 1 6 6 110 110 7 7 111 111 8 8 1000 1000 9 1 1001 1 10 2 1010 10 11 3 1011 11 12 12 1100 1100 13 1 1101 1 14 14 1110 1110 15 15 1111 1111
Links
Programs
-
Mathematica
Array[FromDigits[If[Length[s=Split@IntegerDigits[#,2]]>1,Flatten[s[[-2;;]]],First@s],2]&,100,0] (* Giorgos Kalogeropoulos, Apr 27 2021 *)
-
PARI
a(n) = { if (n, my (z=valuation(n, 2), o=valuation(n/2^z+1, 2)); (2^o-1)*2^z, 0) }
-
Python
def A342410(n): if n == 0 : return 0 for i, d in enumerate(bin(n)[2:].split('0')[::-1]): if d != '': return int(d+'0'*i,2) # Chai Wah Wu, Apr 29 2021
Comments