cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342127 Numbers m such that the product of m and the string m in reverse contains m as a substring.

Original entry on oeis.org

0, 1, 5, 6, 10, 47, 50, 60, 75, 78, 100, 125, 152, 457, 500, 600, 750, 1000, 1025, 1052, 1250, 1520, 5000, 5625, 6000, 7500, 10000, 10025, 10052, 10250, 10520, 12266, 12500, 15200, 23258, 43567, 50000, 56250, 60000, 62656, 75000, 82291, 90625, 98254, 100000, 100025, 100052, 100250, 100520
Offset: 1

Views

Author

Scott R. Shannon, Mar 01 2021

Keywords

Comments

Numerous patterns exist in the terms, e.g., all numbers of the form 1*10^k, 5*10^k, 6*10^k, 75*10^k, 10^(k+2)+25, where k>=0, are in the sequence.

Examples

			6 is a term as 6*reverse(6) = 6*6 = 36 contains '6' as a substring.
47 is a term as 47*reverse(47) = 47*74 = 3478 contains '47' as a substring.
1052 is a term as 1052*reverse(1052) = 1052*2501 = 2631052 contains '1052' as a substring.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,d,Lp,r,i;
      L:= convert(n,base,10);
      d:= nops(L);
      r:= add(L[-i]*10^(i-1),i=1..d);
      Lp:= convert(n*r,base,10);
      ormap(t -> Lp[t..t+d-1] = L, [$1..nops(Lp)+1-d])
    end proc:
    select(filter, [$0..120000]); # Robert Israel, Mar 24 2024
  • Mathematica
    Select[Range[0,110000],SequenceCount[IntegerDigits[# IntegerReverse[#]],IntegerDigits[#]]>0&] (* Harvey P. Dale, Apr 20 2024 *)
  • PARI
    isok(m) = #strsplit(Str(m*fromdigits(Vecrev(digits(m)))), Str(m)) > 1; \\ Michel Marcus, Mar 01 2021
    
  • Python
    def ok(n): return (s:=str(n)) in str(n*int(s[::-1]))
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Mar 25 2024