cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342174 Primes in A342173.

Original entry on oeis.org

3, 11, 23, 43, 53, 71, 107, 229, 241, 269, 293, 313, 643, 701, 857, 883, 1109, 1361, 1601, 1693, 1697, 1721, 1867, 2267, 2621, 2719, 2767, 2789, 2971, 3067, 3137, 3169, 3529, 3533, 3557, 3739, 3767, 4007, 4093, 4139, 4153, 4219, 4337, 4423, 4447, 4451, 4517, 4663, 4787, 4943, 5279, 5387, 5501
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 03 2021

Keywords

Examples

			The first three primes in A342173 are a(1) = A342173(3) = 3, a(2) = A342173(5) = 11, and a(3) = A342173(8) = 23.
		

Crossrefs

Cf. A342173.

Programs

  • Maple
    f:= proc(n) local t, i, s;
      t:= ithprime(n);
      add(floor(t/ ithprime(i)), i=1..n-1)
    end proc:
    select(isprime, map(f,[$1..100]));

A056852 a(n) = (p^p + 1)/(p + 1), where p = prime(n).

Original entry on oeis.org

7, 521, 102943, 23775972551, 21633936185161, 45957792327018709121, 98920982783015679456199, 870019499993663001431459704607, 85589538438707037818727607157700537549449, 533411691585101123706582594658103586126397951, 277766709362573247738903423315679814371773581141321037961
Offset: 2

Views

Author

Robert G. Wilson v, Aug 30 2000

Keywords

Comments

From Lorenzo Sauras Altuzarra, Nov 27 2022: (Start)
Are all terms pairwise coprime? If so, they induce a permutation of the natural numbers, as Fermat numbers do (see A343767).
Are all terms squarefree?
A342173(n) <= length(a(n)) = A055642(a(n)) (the proof is due to Jinyuan Wang). (End)

Crossrefs

Programs

  • Maple
    a := n -> (ithprime(n)^ithprime(n)+1)/(ithprime(n)+1): # Lorenzo Sauras Altuzarra, Nov 27 2022
  • Mathematica
    Table[ (Prime[ n ]^Prime[ n ] + 1)/(Prime[ n ] + 1), {n, 2, 11} ]
    (#^#+1)/(#+1)&/@Prime[Range[2,20]] (* Harvey P. Dale, Apr 23 2015 *)

Formula

From Lorenzo Sauras Altuzarra, Nov 27 2022: (Start)
a(n) = Sum_{k=0..prime(n)-1} (-prime(n))^k.
a(n) = F(prime(n), 1)/F(prime(n), 0), where F(b, n) = b^b^n + 1 (i.e., F(b, n) is the n-th base-b Fermat number, see A129290). (End)
Showing 1-2 of 2 results.