cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A014228 Product of 3 successive Catalan numbers.

Original entry on oeis.org

2, 10, 140, 2940, 77616, 2378376, 80978040, 2982691140, 116776877360, 4800591267472, 205384736883872, 9084324900632800, 413286869105712000, 19262120149391220000, 916763612521908006000, 44440565510927197408500, 2189466044883038600910000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 2,
          8*(2*n-1)*(2*n+1)*(2*n+3) *a(n-1) /((n+1)*(n+2)*(n+3)))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 20 2013
  • Mathematica
    a[n_] := Times @@ CatalanNumber[{n, n+1, n+2}];
    a /@ Range[0, 16] (* Jean-François Alcover, Dec 18 2020 *)

Formula

a(n) ~ 64^(n+1) / (Pi^(3/2) * n^(9/2)). - Vaclav Kotesovec, Aug 25 2014
From Amiram Eldar, Apr 02 2022: (Start)
a(n) = C(n)*C(n+1)*C(n+2), where C(n) = A000108(n) is the n-th Catalan number.
Sum_{n>=0} a(n)/4^(3*n+3) = 1/2 - 64*Gamma(7/4)^2/(45*Pi*Gamma(5/4)^2). (End)

A259711 Numbers that can be written as a product of Catalan numbers.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 14, 16, 20, 25, 28, 32, 40, 42, 50, 56, 64, 70, 80, 84, 100, 112, 125, 128, 132, 140, 160, 168, 196, 200, 210, 224, 250, 256, 264, 280, 320, 336, 350, 392, 400, 420, 429, 448, 500, 512, 528, 560, 588, 625, 640, 660, 672, 700, 784, 800, 840
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Examples

			70 = 5*14 = C(3)*C(4). - _David A. Corneth_, Mar 26 2021
		

Crossrefs

Showing 1-2 of 2 results.