cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259711 Numbers that can be written as a product of Catalan numbers.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 14, 16, 20, 25, 28, 32, 40, 42, 50, 56, 64, 70, 80, 84, 100, 112, 125, 128, 132, 140, 160, 168, 196, 200, 210, 224, 250, 256, 264, 280, 320, 336, 350, 392, 400, 420, 429, 448, 500, 512, 528, 560, 588, 625, 640, 660, 672, 700, 784, 800, 840
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Examples

			70 = 5*14 = C(3)*C(4). - _David A. Corneth_, Mar 26 2021
		

Crossrefs

A342288 a(n) = C(n)*C(n+2), where C(n) is the n-th Catalan number A000108(n).

Original entry on oeis.org

2, 5, 28, 210, 1848, 18018, 188760, 2085798, 24018280, 285817532, 3493769552, 43672119400, 556315613280, 7202300350500, 94561966954800, 1256886144107550, 16888191533829000, 229116465142280100, 3135277944052254000, 43238333101156993800, 600502564063273528800
Offset: 0

Views

Author

N. J. A. Sloane, Mar 26 2021

Keywords

Crossrefs

Inspired by A000108, A005568, A014228.

Programs

  • Mathematica
    a[n_] := CatalanNumber[n] * CatalanNumber[n + 2]; Array[a, 21, 0] (* Amiram Eldar, Apr 02 2022 *)
  • Python
    A342288_list = [2]
    for n in range(1,100): A342288_list.append(A342288_list[-1]*4*(2*n-1)*(2*n+3)//((n+1)*(n+3))) # Chai Wah Wu, Mar 26 2021

Formula

a(n) = a(n-1)*4*(2*n-1)*(2*n+3)/((n+1)*(n+3)). - Chai Wah Wu, Mar 26 2021
Sum_{n>=0} a(n)/4^(2*n+2) = 1/2 - 16/(15*Pi). - Amiram Eldar, Apr 02 2022

A014231 (Product of 3 successive Catalan numbers)/2.

Original entry on oeis.org

1, 5, 70, 1470, 38808, 1189188, 40489020, 1491345570, 58388438680, 2400295633736, 102692368441936, 4542162450316400, 206643434552856000, 9631060074695610000, 458381806260954003000, 22220282755463598704250, 1094733022441519300455000, 54717445279576990999935000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000108.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          8*(2*n-1)*(2*n+1)*(2*n+3)*a(n-1)/((n+1)*(n+2)*(n+3)))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 20 2013
  • Mathematica
    Times@@@Partition[CatalanNumber[Range[0,20]],3,1]/2 (* Harvey P. Dale, Apr 10 2013 *)

Formula

a(n) = A014228(n)/2.
Showing 1-3 of 3 results.