A342336 Number of compositions of n with all adjacent parts (x, y) satisfying x > 2y or y = 2x.
1, 1, 1, 2, 2, 2, 4, 6, 5, 6, 8, 10, 12, 15, 19, 22, 25, 28, 37, 41, 46, 62, 72, 79, 95, 113, 123, 144, 176, 200, 232, 268, 311, 363, 412, 485, 577, 658, 743, 875, 999, 1126, 1338, 1562, 1767, 2034, 2365, 2691, 3088, 3596, 4152, 4785, 5479, 6310, 7273, 8304, 9573, 11136, 12799, 14619, 16910, 19425, 22142, 25579
Offset: 0
Keywords
Examples
The a(1) = 1 through a(12) = 12 compositions (A = 10, B = 11, C = 12): 1 2 3 4 5 6 7 8 9 A B C 21 13 14 15 16 17 18 19 1A 1B 42 25 26 27 28 29 2A 213 142 215 63 37 38 39 214 1421 216 163 137 84 421 2142 217 218 138 4213 263 219 21421 425 426 4214 1425 14213 2163 4215 14214
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 121 terms from David A. Corneth)
- David A. Corneth, PARI program
Crossrefs
The second condition alone gives A154402 for partitions.
The case of equality is A342331.
The version allowing equality (i.e., non-strict relations) is A342335.
A000929 counts partitions with adjacent parts x >= 2y.
A002843 counts compositions with adjacent parts x <= 2y.
A342332 counts compositions with adjacent parts x > 2y or y > 2x.
A342333 counts compositions with adjacent parts x >= 2y or y >= 2x.
A342337 counts partitions with adjacent parts x = y or x = 2y.
A342338 counts compositions with adjacent parts x < 2y and y <= 2x.
A342342 counts strict compositions with adjacent parts x <= 2y and y <= 2x.
Programs
-
Maple
b:= proc(n, x) option remember; `if`(n=0, 1, add( `if`(x=0 or x>2*y or y=2*x, b(n-y, y), 0), y=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..80); # Alois P. Heinz, Mar 14 2021
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]>2*#[[i-1]]||#[[i-1]]==2*#[[i]],{i,2,Length[#]}]&]],{n,0,15}] (* Second program: *) b[n_, x_] := b[n, x] = If[n == 0, 1, Sum[ If[x == 0 || x > 2y || y == 2x, b[n-y, y], 0], {y, 1, n}]]; a[n_] := b[n, 0]; a /@ Range[0, 80] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
PARI
\\ See PARI link. David A. Corneth, Mar 12 2021
-
PARI
C(n, pred)={my(M=matid(n)); for(k=1, n, for(i=1, k-1, M[i, k]=sum(j=1, k-i, if(pred(j, i), M[j, k-i], 0)))); sum(q=1, n, M[q, ])} seq(n)={concat([1], C(n, (i,j)->i>2*j || j==2*i))} \\ Andrew Howroyd, Mar 13 2021
Extensions
More terms from Joerg Arndt, Mar 12 2021
Comments