A342444 a(n) is the smallest number of consecutive primes that are necessary to add to obtain the largest prime = A342443(n) < 10^n.
2, 3, 5, 9, 5, 29, 281, 1575, 599, 7, 17, 3, 6449, 2725361, 163315
Offset: 1
Examples
A342443(1) = 5 = 2 + 3, hence a(1) = 2. A342443(2) = 97 = 29 + 31 + 37, hence a(2) = 3. From _Jon E. Schoenfield_, Mar 14 2021: (Start) a(n) = sum of consecutive primes number of ----------------------------------------- consecutive n A342454(n) + ... = A342443(n) primes -- ----------------------------------------- ----------- 1 2 + 3 = 5 2 2 29 + 31 + 37 = 97 3 3 191 + ... = 991 5 4 1087 + ... = 9949 9 5 19979 + ... = 99971 5 6 34337 + ... = 999983 29 7 34129 + ... = 9999991 281 8 54829 + ... = 99999989 1575 9 1665437 + ... = 999999937 599 10 1428571363 + ... = 9999999943 7 11 5882352691 + ... = 99999999977 17 12 333333333299 + ... = 999999999989 3 13 1550560001 + ... = 9999999999763 6449 14 13384757 + ... = 99999999999959 2725361 (End)
Extensions
a(6)-a(9) from Jinyuan Wang, Mar 13 2021
a(10) from David A. Corneth, Mar 13 2021
a(11)-a(14) from Jon E. Schoenfield, Mar 14 2021
a(15) from Max Alekseyev, Dec 11 2024
Comments