cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A342370 a(n) = Sum_{k=1..n} gcd(k,n)^(k-1).

Original entry on oeis.org

1, 3, 11, 68, 629, 7797, 117655, 2097254, 43046979, 1000000799, 25937424611, 743008402000, 23298085122493, 793714773374529, 29192926027528343, 1152921504613147242, 48661191875666868497, 2185911559739107208115, 104127350297911241532859, 5242880000000008181608132
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^(k - 1), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^(k-1));

Formula

If p is prime, a(p) = p-1 + p^(p-1) = A173235(p).

Extensions

a(19) and beyond from Martin Ehrenstein, Mar 13 2021

A341036 a(n) = Sum_{k=1..n} gcd(k,n)^(k-2).

Original entry on oeis.org

1, 2, 5, 19, 129, 1306, 16813, 262181, 4783059, 100000214, 2357947701, 61917372083, 1792160394049, 56693912393474, 1946195068811453, 72057594039243049, 2862423051509815809, 121439531096661117354, 5480386857784802185957
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^(k - 2), {k, 1, n}]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^(k-2));

A343114 a(n) = Sum_{i=1..n} gcd(n^i,i).

Original entry on oeis.org

1, 3, 5, 8, 9, 17, 13, 20, 21, 35, 21, 50, 25, 49, 51, 48, 33, 91, 37, 88, 77, 89, 45, 126, 65, 107, 81, 124, 57, 255, 61, 112, 141, 163, 137, 242, 73, 177, 167, 232, 81, 365, 85, 220, 227, 209, 93, 328, 133, 315, 213, 264, 105, 393, 229, 342, 257, 267, 117, 680, 121, 281
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 05 2021

Keywords

Crossrefs

Cf. A018804 (Pillai's function), A342449.

Programs

  • Mathematica
    Table[Sum[GCD[n^i, i], {i, n}], {n, 100}]
  • PARI
    a(n) = sum(i=1, n, gcd(n^i, i)); \\ Michel Marcus, Apr 05 2021

Formula

If p is prime, a(p) = 2*p -1. - Seiichi Manyama, Apr 06 2021

A343395 a(n) = Sum_{i=1..n} gcd(n^(n-i),n-i).

Original entry on oeis.org

1, 2, 3, 5, 5, 12, 7, 13, 13, 26, 11, 39, 13, 36, 37, 33, 17, 74, 19, 69, 57, 68, 23, 103, 41, 82, 55, 97, 29, 226, 31, 81, 109, 130, 103, 207, 37, 140, 129, 193, 41, 324, 43, 177, 183, 164, 47, 281, 85, 266, 163, 213, 53, 340, 175, 287, 201, 210, 59, 621, 61, 220, 289
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 13 2021

Keywords

Crossrefs

Cf. A018804 (Pillai's function), A342449, A343114.

Programs

  • Mathematica
    Table[Sum[GCD[n^(n - i), n - i], {i, n}], {n, 100}]
  • PARI
    a(n) = sum(i=1, n, gcd(n^(n-i), n-i)); \\ Michel Marcus, Apr 15 2021
Showing 1-4 of 4 results.