cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342471 a(n) = Sum_{d|n} phi(d)^n.

Original entry on oeis.org

1, 2, 9, 18, 1025, 130, 279937, 65794, 10078209, 2097154, 100000000001, 16789506, 106993205379073, 156728328194, 35185445863425, 281479271743490, 295147905179352825857, 203119913861122, 708235345355337676357633, 1152923703631151106
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^n &]; Array[a, 20] (* Amiram Eldar, Mar 13 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^n);
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (eulerphi(k)*x)^k/(1-(eulerphi(k)*x)^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(n-1).
G.f.: Sum_{k>=1} (phi(k)*x)^k/(1 - (phi(k)*x)^k).
If p is prime, a(p) = 1 + (p-1)^p = A110567(p-1).
a(n) = Sum_{k=1..n} phi(gcd(n,k))^n/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A342473 a(n) = Sum_{d|n} phi(d)^d.

Original entry on oeis.org

1, 2, 9, 18, 1025, 74, 279937, 65554, 10077705, 1049602, 100000000001, 16777306, 106993205379073, 78364444034, 35184372089865, 281474976776210, 295147905179352825857, 101559966746186, 708235345355337676357633, 1152921504607896594, 46005119909369701746057, 10000000000100000000002
Offset: 1

Views

Author

Seiichi Manyama, Mar 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[#]^# &]; Array[a, 20] (* Amiram Eldar, Mar 14 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)^d);
    
  • PARI
    a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(n/gcd(k, n)-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (eulerphi(k)*x)^k/(1-x^k)))

Formula

a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(n/gcd(k, n) - 1).
G.f.: Sum_{k>=1} (phi(k) * x)^k/(1 - x^k).
If p is prime, a(p) = 1 + (p-1)^p = A110567(p-1).
a(n) = Sum_{k=1..n} phi(gcd(n,k))^gcd(n,k)/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A342535 a(n) = Sum_{k=1..n} phi(gcd(k, n))^3.

Original entry on oeis.org

1, 2, 10, 11, 68, 20, 222, 78, 238, 136, 1010, 110, 1740, 444, 680, 604, 4112, 476, 5850, 748, 2220, 2020, 10670, 780, 8276, 3480, 6330, 2442, 21980, 1360, 27030, 4792, 10100, 8224, 15096, 2618, 46692, 11700, 17400, 5304, 64040, 4440, 74130, 11110, 16184, 21340, 97382, 6040
Offset: 1

Views

Author

Seiichi Manyama, Mar 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^3 &]; Array[a, 50] (* Amiram Eldar, Mar 15 2021 *)
    Table[Sum[EulerPhi[GCD[k,n]]^3,{k,n}],{n,50}] (* Harvey P. Dale, Jul 15 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(gcd(k, n))^3);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^3);

Formula

a(n) = Sum_{d|n} phi(n/d) * phi(d)^3.
a(n) = Sum_{k=1..n} phi(gcd(k,n))*phi(n/gcd(k,n))^2. - Richard L. Ollerton, May 10 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/4) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 2/p^4 + 3/p^6 - 3/p^7 + 1/p^8) = 0.093622450005... . - Amiram Eldar, Nov 15 2022
Showing 1-3 of 3 results.