A342528
Number of compositions with alternating parts weakly decreasing (or weakly increasing).
Original entry on oeis.org
1, 1, 2, 4, 7, 12, 20, 32, 51, 79, 121, 182, 272, 399, 582, 839, 1200, 1700, 2394, 3342, 4640, 6397, 8771, 11955, 16217, 21878, 29386, 39285, 52301, 69334, 91570, 120465, 157929, 206313, 268644, 348674, 451185, 582074, 748830, 960676, 1229208, 1568716, 1997064
Offset: 0
The a(1) = 1 through a(6) = 20 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(121) (41) (42)
(211) (131) (51)
(1111) (212) (141)
(221) (222)
(311) (231)
(1211) (312)
(2111) (321)
(11111) (411)
(1212)
(1311)
(2121)
(2211)
(3111)
(12111)
(21111)
(111111)
The version with alternating parts unequal is
A224958 (unordered:
A000726).
The version with alternating parts equal is
A342527.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A002843 counts compositions with all adjacent parts x <= 2y.
A003242 counts anti-run compositions.
Cf.
A001522,
A008965,
A048004,
A059966,
A062968,
A064410,
A064428,
A065608,
A167606,
A325557,
A342519.
-
b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, j)+b(n-i, min(n-i, j), min(n-i, i))))
end:
a:= n-> b(n$3):
seq(a(n), n=0..42); # Alois P. Heinz, Jan 16 2025
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Plus@@@Reverse/@Partition[#,2,1]&]],{n,0,15}]
-
seq(n)={my(p=1/prod(k=1, n, 1-y*x^k + O(x*x^n))); Vec(1+sum(k=1, n, polcoef(p,k,y)*(polcoef(p,k-1,y) + polcoef(p,k,y))))} \\ Andrew Howroyd, Mar 24 2021
A342516
Number of strict integer partitions of n with weakly increasing first quotients.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 7, 8, 8, 11, 12, 14, 15, 17, 17, 21, 22, 26, 29, 31, 32, 35, 38, 42, 45, 48, 51, 58, 59, 63, 70, 76, 80, 88, 94, 98, 105, 113, 121, 129, 133, 143, 153, 159, 166, 183, 189, 195, 210, 221, 231, 248, 262, 273, 284, 298, 312
Offset: 0
The partition (6,3,2,1) has first quotients (1/2,2/3,1/2) so is not counted under a(12), even though the first differences (-3,-1,-1) are weakly increasing.
The a(1) = 1 through a(13) = 11 partitions (A..D = 10..13):
1 2 3 4 5 6 7 8 9 A B C D
21 31 32 42 43 53 54 64 65 75 76
41 51 52 62 63 73 74 84 85
61 71 72 82 83 93 94
421 521 81 91 92 A2 A3
621 532 A1 B1 B2
721 632 732 C1
821 921 643
832
931
A21
The version for differences instead of quotients is
A179255.
The non-strict ordered version is
A342492.
The strictly increasing version is
A342517.
The weakly decreasing version is
A342519.
A000929 counts partitions with all adjacent parts x >= 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with all adjacent parts x <= 2y (strict:
A342095).
Cf.
A000005,
A003114,
A003242,
A005117,
A057567,
A067824,
A238710,
A253249,
A318991,
A318992,
A342528.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&LessEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
A342518
Number of strict integer partitions of n with strictly decreasing first quotients.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 12, 13, 17, 18, 21, 24, 28, 30, 34, 37, 41, 47, 52, 56, 63, 68, 72, 83, 89, 99, 108, 117, 128, 139, 149, 163, 179, 189, 203, 217, 233, 250, 272, 289, 305, 329, 355, 381, 410, 438, 471, 505, 540, 571, 607, 645, 683, 726
Offset: 0
The strict partition (12,10,6,3,1) has first quotients (5/6,3/5,1/2,1/3) so is counted under a(32), even though the differences (-2,-4,-3,-2) are not strictly decreasing.
The a(1) = 1 through a(13) = 12 partitions (A..D = 10..13):
1 2 3 4 5 6 7 8 9 A B C D
21 31 32 42 43 53 54 64 65 75 76
41 51 52 62 63 73 74 84 85
321 61 71 72 82 83 93 94
431 81 91 92 A2 A3
432 541 A1 B1 B2
531 631 542 543 C1
4321 641 642 652
731 651 742
741 751
831 841
5431
The version for differences instead of quotients is
A320388.
The non-strict ordered version is
A342494.
The strictly increasing version is
A342517.
The weakly decreasing version is
A342519.
A045690 counts sets with maximum n with all adjacent elements y < 2x.
A167865 counts strict chains of divisors > 1 summing to n.
A342096 counts partitions with all adjacent parts x < 2y (strict:
A342097).
A342098 counts (strict) partitions with all adjacent parts x > 2y.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Greater@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
A342513
Number of integer partitions of n with weakly decreasing first quotients.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 15, 20, 21, 24, 28, 29, 33, 40, 44, 49, 57, 61, 65, 77, 84, 87, 99, 106, 115, 132, 141, 152, 167, 180, 193, 212, 228, 246, 274, 290, 309, 338, 357, 382, 412, 439, 463, 498, 536, 569, 608, 648, 693, 743, 790, 839, 903, 949
Offset: 1
The partition (9,7,4,2,1) has first quotients (7/9,4/7,1/2,1/2) so is counted under a(23).
The a(1) = 1 through a(8) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(11111) (222) (331) (71)
(321) (421) (332)
(111111) (2221) (431)
(1111111) (2222)
(11111111)
The version for differences instead of quotients is
A320466.
The weakly increasing version is
A342497.
The strictly decreasing version is
A342499.
The Heinz numbers of these partitions are
A342526.
A000005 counts constant partitions.
A000929 counts partitions with all adjacent parts x >= 2y.
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors > 1 summing to n.
A342094 counts partitions with adjacent parts x <= 2y.
-
Table[Length[Select[IntegerPartitions[n],GreaterEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,30}]
A342526
Heinz numbers of integer partitions with weakly decreasing first quotients.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87
Offset: 1
The prime indices of 294 are {1,2,4,4}, with first quotients (2,2,1), so 294 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
12: {1,1,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
36: {1,1,2,2}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
52: {1,1,6}
56: {1,1,1,4}
60: {1,1,2,3}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
72: {1,1,1,2,2}
76: {1,1,8}
78: {1,2,6}
80: {1,1,1,1,3}
84: {1,1,2,4}
The version counting strict divisor chains is
A057567.
For multiplicities (prime signature) instead of quotients we have
A242031.
For differences instead of quotients we have
A325361 (count:
A320466).
The weakly increasing version is
A342523.
The strictly decreasing version is
A342525.
A000929 counts partitions with all adjacent parts x >= 2y.
A002843 counts compositions with all adjacent parts x <= 2y.
A167865 counts strict chains of divisors > 1 summing to n.
A318991/
A318992 rank reversed partitions with/without integer quotients.
Cf.
A048767,
A056239,
A067824,
A112798,
A238710,
A253249,
A325351,
A325352,
A325405,
A334997,
A342086,
A342191.
-
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[100],GreaterEqual@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
Showing 1-5 of 5 results.
Comments