cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A342260 a(n)^2 is the least square that, when written in base n, has exactly n digits n-1.

Original entry on oeis.org

3, 31, 217, 268, 8399, 29110, 711243, 4676815, 31622764, 376863606, 12638826343, 38121744938, 1511790122972, 8648472039419, 243625577528103
Offset: 2

Views

Author

Hugo Pfoertner, Apr 04 2021

Keywords

Comments

17^(25/2) < a(17) <= 4159201115231103. - Martin Ehrenstein, Jul 10 2021

Examples

			a(2) = 3: 3^2 = 9 is the least square with 2 binary ones: 1001;
a(3) = 31: 31^2 = 961 is the least square with 3 ternary digits 2: 1022121;
a(4) = 217: 217^2 = 47089 = 23133301_4;
a(5) = 268: 268^2 = 71824 = 4244244_5.
		

Crossrefs

Programs

  • PARI
    isok(k, n) = #select(x->(x==n-1), digits(k^2, n)) == n;
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Apr 05 2021
    
  • Python
    from sympy.ntheory.factor_ import digits
    def A342260(n):
        k = 1
        while digits(k**2,n).count(n-1) != n:
            k += 1
        return k # Chai Wah Wu, Apr 05 2021

Formula

a(n) <= n^(n+1) - 1. - Bert Dobbelaere, Apr 20 2021

Extensions

a(14) from Martin Ehrenstein, Apr 17 2021
a(15) from Bert Dobbelaere, Apr 20 2021
a(16) from Martin Ehrenstein, Apr 21 2021

A342545 a(n)^2 is the least square that has exactly n 0's in base n.

Original entry on oeis.org

2, 24, 16, 280, 216, 3430, 4096, 19683, 100000, 4348377, 2985984, 154457888, 105413504, 4442343750, 4294967296, 313909084845, 198359290368, 8712567840033, 10240000000000, 500396429346030, 584318301411328, 38112390316557080, 36520347436056576, 298023223876953125
Offset: 2

Views

Author

Hugo Pfoertner, Apr 07 2021

Keywords

Examples

			   n    a(n)         a(n)^2   in base n
   2       2              4   100
   3      24            576   210100
   4      16            256   10000
   5     280          78400   10002100
   6     216          46656   1000000
   7    3430       11764900   202000000
   8    4096       16777216   100000000
   9   19683      387420489   1000000000
  10  100000    10000000000   10000000000
  11 4348377 18908382534129   6030000000000
  12 2985984  8916100448256   1000000000000
		

Crossrefs

Programs

  • PARI
    for(b=2,12,for(k=1,oo,my(s=k^2,v=digits(s,b));if(sum(k=1,#v,v[k]==0)==b,print1(k,", ");break)))
    
  • Python
    from numba import njit
    @njit # works with 64 bits through a(14)
    def digits0(n, b):
      count0 = 0
      while n >= b:
        n, r = divmod(n, b)
        count0 += (r==0)
      return count0 + (n==0)
    from sympy import integer_nthroot
    def a(n):
      an = integer_nthroot(n**n, 2)[0]
      while digits0(an*an, n) != n: an += 1
      return an
    print([a(n) for n in range(2, 13)]) # Michael S. Branicky, Apr 07 2021
    
  • Python
    from itertools import product
    from functools import reduce
    from sympy.utilities.iterables import multiset_permutations
    from sympy import integer_nthroot
    def A342545(n):
        for a in range(1,n):
            p, q = integer_nthroot(a*n**n,2)
            if q: return p
        l = 1
        while True:
            cmax = n**(l+n+1)
            for a in range(1,n):
                c = cmax
                for b in product(range(1,n),repeat=l):
                    for d in multiset_permutations((0,)*n+b):
                        p, q = integer_nthroot(reduce(lambda c, y: c*n+y, [a]+d),2)
                        if q: c = min(c,p)
                if c < cmax:
                    return c
            l += 1 # Chai Wah Wu, Apr 07 2021

Formula

a(2*n) = A062971(n) = 2*A193678(n).

Extensions

More terms from Chai Wah Wu, Apr 07 2021
Showing 1-2 of 2 results.