A342557 T(n,m) is the number of unlabeled connected graphs without endpoints on m nodes with n edges, where T(n,m), m <= n, is a triangle read by rows.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 5, 1, 0, 0, 0, 0, 2, 11, 8, 1, 0, 0, 0, 0, 1, 15, 31, 12, 1, 0, 0, 0, 0, 1, 12, 63, 71, 16, 1, 0, 0, 0, 0, 0, 8, 89, 231, 144, 21, 1, 0, 0, 0, 0, 0, 5, 97, 513, 707, 274, 27, 1
Offset: 1
Examples
The triangle begins 0; 0, 0; 0, 0, 1; 0, 0, 0, 1; 0, 0, 0, 1, 1; 0, 0, 0, 1, 3, 1; 0, 0, 0, 0, 3, 5, 1; 0, 0, 0, 0, 2, 11, 8, 1; 0, 0, 0, 0, 1, 15, 31, 12, 1; 0, 0, 0, 0, 1, 12, 63, 71, 16, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50; first 24 rows from Hugo Pfoertner)
Crossrefs
Programs
-
PARI
\\ Needs G() defined in A369932. InvEulerMTS(p)={my(n=serprec(p, x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i)} T(n)={my(r=Vec(InvEulerMTS(substvec(G(n),[x,y],[y,x])))); vector(#r-1, i, Vecrev(Pol(r[i+1]/y),i)) } { my(A=T(12)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 07 2024
Formula
Bivariate inverse Euler transform of A369932. - Andrew Howroyd, Feb 07 2024
Comments