A342575 a(n) is the exponent of the least power of 2 such that the concatenated digits of the decimal expansion of 2^n are a proper substring of the concatenated digits of the decimal expansion of 2^a(n).
4, 5, 6, 7, 14, 15, 26, 102, 103, 104, 224, 103, 104, 105, 506, 507, 452, 1169, 1170, 1171, 8228, 10419, 15186, 5227, 16619, 16620, 16621, 25102, 130090, 62640, 330791, 330792, 351403, 273100, 681504, 649069, 352375, 3045104, 3045105, 3635007, 9532211, 7819691, 3091425, 3091426
Offset: 0
Examples
n 2^n a(n) 2^a(n) 0 1 4 _1_6 1 2 5 3_2_ 2 4 6 6_4_ 3 8 7 12_8_ 4 16 14 _16_384 5 32 15 _32_768 6 64 26 671088_64_ 7 128 102 50706024009129176059868_128_21504 8 256 103 101412048018258352119736_256_43008 9 512 104 202824096036516704239472_512_86016 10 1024 224 2695994666715 ... 06736371444225405724811036_1024_9216 11 2048 103 10141_2048_01825835211973625643008 12 4096 104 20282_4096_03651670423947251286016 13 8192 105 40564_8192_07303340847894502572032
Crossrefs
Cf. A342601.
Programs
-
Maple
a:= proc(n) local k, p; p:= ""||(2^n); for k from n+1 while searchtext(p, ""||(2^k))=0 do od; k end: seq(a(n), n=0..24); # Alois P. Heinz, Mar 17 2021
-
PARI
vecmatch(vshort,vlong)={my(l=#vshort,L=#vlong);for(i=0,L-l,if(vshort==vlong[i+1..i+l],return(i+1)));0} for(n=0,26,my(vx=digits(2^n));for(y=n+1,oo,my(vy=digits(2^y));if(vecmatch(vx,vy)>0,print1(y,", ");break)))
-
PARI
a(n) = my(k=n+1, s=Str(2^n)); while (#strsplit(Str(2^k), s) <=1, k++); k; \\ Michel Marcus, Mar 17 2021
-
Python
def a(n): k, twok, target = n+1, 2**(n+1), str(2**n) while target not in str(twok): k, twok = k+1, twok*2 return k print([a(n) for n in range(27)]) # Michael S. Branicky, Mar 16 2021
Extensions
a(28)-a(36) from Jon E. Schoenfield, confirmed by Michael S. Branicky, Mar 17 2021
a(37)-a(43) from Bert Dobbelaere, Mar 19 2021