cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342621 Sum of the partition number of the prime factors of n with multiplicity.

Original entry on oeis.org

0, 2, 3, 4, 7, 5, 15, 6, 6, 9, 56, 7, 101, 17, 10, 8, 297, 8, 490, 11, 18, 58, 1255, 9, 14, 103, 9, 19, 4565, 12, 6842, 10, 59, 299, 22, 10, 21637, 492, 104, 13, 44583, 20, 63261, 60, 13, 1257, 124754, 11, 30, 16, 300, 105, 329931, 11, 63, 21, 493, 4567, 831820
Offset: 1

Views

Author

Eric Desbiaux, Mar 16 2021

Keywords

Examples

			For n = 408 = 2^3*3*17, a(408) = 3 * A000041(2) + A000041(3) + A000041(17) = 3*2 + 3 + 297 = 306.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(combinat[numbpart](i[1])*i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Mar 17 2021
  • Mathematica
    {0}~Join~Array[Total@ Map[#2 PartitionsP[#1] & @@ # &, FactorInteger[#]] &, 58, 2] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,2]*numbpart(f[k,1])); \\ Michel Marcus, Mar 17 2021
  • Sage
    def a(n):
        return sum([Partitions(primefactor).cardinality() for (primefactor,exponent) in factor(n) for _ in range(exponent)])
    [a(n) for n in (1..100)]
    

Formula

a(A003586(n)) - A001414(A003586(n)) = 0.
a(A006899(n)) * A008480(A006899(n)) - A001414(A006899(n)) = 0.
a(n) = Sum_{k=1..A001222(n)} A000041(A027746(n,k)). - Alois P. Heinz, Apr 09 2021