cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342974 Primes p such that the order of 2 modulo p is not divisible by the largest odd divisor of p - 1.

Original entry on oeis.org

31, 43, 109, 127, 151, 157, 223, 229, 241, 251, 277, 283, 307, 331, 397, 431, 433, 439, 457, 499, 571, 601, 631, 641, 643, 673, 683, 691, 727, 733, 739, 811, 911, 919, 953, 971, 997, 1013, 1021, 1051, 1069, 1093, 1103, 1163, 1181, 1321, 1327, 1399, 1423, 1429
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 01 2021

Keywords

Comments

Every prime factor of a composite Fermat number belongs to this sequence.
If a prime of the form 3*2^k + 1 belongs to this sequence, then k is in A204620 (see Golomb).
Primes p such that A014664(primepi(p)) is not divisible by A057023(primepi(p)). - Michel Marcus, Apr 26 2021

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@300,Mod[MultiplicativeOrder[2,#],Max@Select[Divisors[#-1],OddQ]]!=0&] (* Giorgos Kalogeropoulos, Apr 02 2021 *)
  • PARI
    forprime(p=3, 1429, if(Mod(znorder(Mod(2, p)), (p-1)>>valuation(p-1, 2)), print1(p, ", ")));