cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342982 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges and k+1 faces, n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 2, 6, 2, 5, 30, 30, 5, 14, 140, 280, 140, 14, 42, 630, 2100, 2100, 630, 42, 132, 2772, 13860, 23100, 13860, 2772, 132, 429, 12012, 84084, 210210, 210210, 84084, 12012, 429, 1430, 51480, 480480, 1681680, 2522520, 1681680, 480480, 51480, 1430
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 1 - k.
A tree-rooted planar map is a planar map with a distinguished spanning tree.

Examples

			Triangle begins:
    1;
    1,     1;
    2,     6,     2;
    5,    30,    30,      5;
   14,   140,   280,    140,     14;
   42,   630,  2100,   2100,    630,    42;
  132,  2772, 13860,  23100,  13860,  2772,   132;
  429, 12012, 84084, 210210, 210210, 84084, 12012, 429;
  ...
		

Crossrefs

Columns k=0..2 are A000108, A002457, 2*A002803.
Row sums are A005568.
Central coefficients are A342983.

Programs

  • Mathematica
    Table[(2 n)!/(k!*(k + 1)!*(n - k)!*(n - k + 1)!), {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
  • PARI
    T(n,k) = {(2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!)}
    { for(n=0, 10, print(vector(n+1, k, T(n,k-1)))) }

Formula

T(n,k) = (2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!).
T(n,n-k) = T(n,k).
T(n, floor(n/2)) = A215288(n).
T(n,k) = A000108(n) * A001263(n+1,k+1). - Werner Schulte, Apr 04 2021