A342982 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges and k+1 faces, n >= 0, k = 0..n.
1, 1, 1, 2, 6, 2, 5, 30, 30, 5, 14, 140, 280, 140, 14, 42, 630, 2100, 2100, 630, 42, 132, 2772, 13860, 23100, 13860, 2772, 132, 429, 12012, 84084, 210210, 210210, 84084, 12012, 429, 1430, 51480, 480480, 1681680, 2522520, 1681680, 480480, 51480, 1430
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 6, 2; 5, 30, 30, 5; 14, 140, 280, 140, 14; 42, 630, 2100, 2100, 630, 42; 132, 2772, 13860, 23100, 13860, 2772, 132; 429, 12012, 84084, 210210, 210210, 84084, 12012, 429; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- R. C. Mullin, On the Enumeration of Tree-Rooted Maps, Canadian Journal of Mathematics, Volume 19, 1967, pp. 174-183.
Crossrefs
Programs
-
Mathematica
Table[(2 n)!/(k!*(k + 1)!*(n - k)!*(n - k + 1)!), {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
-
PARI
T(n,k) = {(2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!)} { for(n=0, 10, print(vector(n+1, k, T(n,k-1)))) }
Comments