cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342985 Triangle read by rows: T(n,k) is the number of tree-rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 3, 3, 0, 0, 4, 36, 4, 0, 0, 5, 135, 135, 5, 0, 0, 6, 360, 1368, 360, 6, 0, 0, 7, 798, 7350, 7350, 798, 7, 0, 0, 8, 1568, 28400, 73700, 28400, 1568, 8, 0, 0, 9, 2826, 89073, 474588, 474588, 89073, 2826, 9, 0, 0, 10, 4770, 241220, 2292790, 4818092, 2292790, 241220, 4770, 10, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k without the initial zero term is a polynomial of degree 4*(k-2)+1.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 2,    0;
  0, 3,    3,     0;
  0, 4,   36,     4,     0;
  0, 5,  135,   135,     5,     0;
  0, 6,  360,  1368,   360,     6,    0;
  0, 7,  798,  7350,  7350,   798,    7, 0;
  0, 8, 1568, 28400, 73700, 28400, 1568, 8, 0;
  ...
		

Crossrefs

Columns and diagonals 3..5 are A006428, A006429, A006430.
Row sums are A342986.

Programs

  • PARI
    \\ here G(n,y) is A342984 as g.f.
    F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)}
    G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))}
    H(n)={my(g=G(n, y)-x*(1+y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) + x*(1+y) is the g.f. of A342984.