A342990 Number of horizontally or vertically semicyclic diagonal Latin squares of order 2n+1.
1, 0, 240, 20160, 0, 319334400, 2167003238400, 0, 2943669154922496000, 5253122016055001088000, 0, 144827547726179682893168640000, 1214667347283206181421056000000000, 0, 184737047979495031539522261089255424000000, 3555700708206908663181998415125686517760000000, 0
Offset: 0
Examples
Example of cyclic diagonal Latin square of order 13: 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2) 4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4) 6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6) 8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8) 10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10) 12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12) 1 2 3 4 5 6 7 8 9 10 11 12 0 (d=14 == 1 (mod 13)) 3 4 5 6 7 8 9 10 11 12 0 1 2 (d=16 == 3 (mod 13)) 5 6 7 8 9 10 11 12 0 1 2 3 4 (d=18 == 5 (mod 13)) 7 8 9 10 11 12 0 1 2 3 4 5 6 (d=20 == 7 (mod 13)) 9 10 11 12 0 1 2 3 4 5 6 7 8 (d=22 == 9 (mod 13)) 11 12 0 1 2 3 4 5 6 7 8 9 10 (d=24 == 11 (mod 13)) Example of horizontally semicyclic diagonal Latin square of order 13: 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2) 4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4) 9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9) 7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7) 12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12) 3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3) 11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11) 6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6) 1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1) 5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5) 10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10) 8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8)
Links
- Eduard I. Vatutin, About the horizontally and vertically semicyclic diagonal Latin squares enumeration (in Russian).
- E. I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Eduard I. Vatutin, Numerical formula between number of horizontally or vertically semicyclic diagonal Latin squares and number of toroidal n-queens problem solutions (in Russian).
- Index entries for sequences related to Latin squares and rectangles.
Formula
a(n) = A071607(n) * (2*n+1)!.
a(n) = A007705(n) * (2n)!. - Eduard I. Vatutin, Mar 15 2024
Comments