cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A007310 Numbers congruent to 1 or 5 mod 6.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 155, 157, 161, 163, 167, 169, 173, 175
Offset: 1

Views

Author

C. Christofferson (Magpie56(AT)aol.com)

Keywords

Comments

Numbers n such that phi(4n) = phi(3n). - Benoit Cloitre, Aug 06 2003
Or, numbers relatively prime to 2 and 3, or coprime to 6, or having only prime factors >= 5; also known as 5-rough numbers. (Edited by M. F. Hasler, Nov 01 2014: merged with comments from Zak Seidov, Apr 26 2007 and Michael B. Porter, Oct 09 2009)
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 38 ).
Numbers k such that k mod 2 = 1 and (k+1) mod 3 <> 1. - Klaus Brockhaus, Jun 15 2004
Also numbers n such that the sum of the squares of the first n integers is divisible by n, or A000330(n) = n*(n+1)*(2*n+1)/6 is divisible by n. - Alexander Adamchuk, Jan 04 2007
Numbers n such that the sum of squares of n consecutive integers is divisible by n, because A000330(m+n) - A000330(m) = n*(n+1)*(2*n+1)/6 + n*(m^2+n*m+m) is divisible by n independent of m. - Kaupo Palo, Dec 10 2016
A126759(a(n)) = n + 1. - Reinhard Zumkeller, Jun 16 2008
Terms of this sequence (starting from the second term) are equal to the result of the expression sqrt(4!*(k+1) + 1) - but only when this expression yields integral values (that is when the parameter k takes values, which are terms of A144065). - Alexander R. Povolotsky, Sep 09 2008
For n > 1: a(n) is prime if and only if A075743(n-2) = 1; a(2*n-1) = A016969(n-1), a(2*n) = A016921(n-1). - Reinhard Zumkeller, Oct 02 2008
A156543 is a subsequence. - Reinhard Zumkeller, Feb 10 2009
Numbers n such that ChebyshevT(x, x/2) is not an integer (is integer/2). - Artur Jasinski, Feb 13 2010
If 12*k + 1 is a perfect square (k = 0, 2, 4, 10, 14, 24, 30, 44, ... = A152749) then the square root of 12*k + 1 = a(n). - Gary Detlefs, Feb 22 2010
A089128(a(n)) = 1. Complement of A047229(n+1) for n >= 1. See A164576 for corresponding values A175485(a(n)). - Jaroslav Krizek, May 28 2010
Cf. property described by Gary Detlefs in A113801 and in Comment: more generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (with h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 6). Also a(n)^2 - 1 == 0 (mod 12). - Bruno Berselli, Nov 05 2010 - Nov 17 2010
Numbers n such that ( Sum_{k = 1..n} k^14 ) mod n = 0. (Conjectured) - Gary Detlefs, Dec 27 2011
From Peter Bala, May 02 2018: (Start)
The above conjecture is true. Apply Ireland and Rosen, Proposition 15.2.2. with m = 14 to obtain the congruence 6*( Sum_{k = 1..n} k^14 )/n = 7 (mod n), true for all n >= 1. Suppose n is coprime to 6, then 6 is a unit in Z/nZ, and it follows from the congruence that ( Sum_{k = 1..n} k^14 )/n is an integer. On the other hand, if either 2 divides n or 3 divides n then the congruence shows that ( Sum_{k = 1..n} k^14 )/n cannot be integral. (End)
A126759(a(n)) = n and A126759(m) < n for m < a(n). - Reinhard Zumkeller, May 23 2013
(a(n-1)^2 - 1)/24 = A001318(n), the generalized pentagonal numbers. - Richard R. Forberg, May 30 2013
Numbers k for which A001580(k) is divisible by 3. - Bruno Berselli, Jun 18 2014
Numbers n such that sigma(n) + sigma(2n) = sigma(3n). - Jahangeer Kholdi and Farideh Firoozbakht, Aug 15 2014
a(n) are values of k such that Sum_{m = 1..k-1} m*(k-m)/k is an integer. Sums for those k are given by A062717. Also see Detlefs formula below based on A062717. - Richard R. Forberg, Feb 16 2015
a(n) are exactly those positive integers m such that the sequence b(n) = n*(n + m)*(n + 2*m)/6 is integral, and also such that the sequence c(n) = n*(n + m)*(n + 2*m)*(n + 3*m)/24 is integral. Cf. A007775. - Peter Bala, Nov 13 2015
Along with 2, these are the numbers k such that the k-th Fibonacci number is coprime to every Lucas number. - Clark Kimberling, Jun 21 2016
This sequence is the Engel expansion of 1F2(1; 5/6, 7/6; 1/36) + 1F2(1; 7/6, 11/6; 1/36)/5. - Benedict W. J. Irwin, Dec 16 2016
The sequence a(n), n >= 4 is generated by the successor of the pair of polygonal numbers {P_s(4) + 1, P_(2*s - 1)(3) + 1}, s >= 3. - Ralf Steiner, May 25 2018
The asymptotic density of this sequence is 1/3. - Amiram Eldar, Oct 18 2020
Also, the only vertices in the odd Collatz tree A088975 that are branch values to other odd nodes t == 1 (mod 2) of A005408. - Heinz Ebert, Apr 14 2021
From Flávio V. Fernandes, Aug 01 2021: (Start)
For any two terms j and k, the product j*k is also a term (the same property as p^n and smooth numbers).
From a(2) to a(phi(A033845(n))), or a((A033845(n))/3), the terms are the totatives of the A033845(n) itself. (End)
Also orders n for which cyclic and semicyclic diagonal Latin squares exist (see A123565 and A342990). - Eduard I. Vatutin, Jul 11 2023
If k is in the sequence, then k*2^m + 3 is also in the sequence, for all m > 0. - Jules Beauchamp, Aug 29 2024

Examples

			G.f. = x + 5*x^2 + 7*x^3 + 11*x^4 + 13*x^5 + 17*x^6 + 19*x^7 + 23*x^8 + ...
		

References

  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1980.

Crossrefs

A005408 \ A016945. Union of A016921 and A016969; union of A038509 and A140475. Essentially the same as A038179. Complement of A047229. Subsequence of A186422.
Cf. A000330, A001580, A002194, A019670, A032528 (partial sums), A038509 (subsequence of composites), A047209, A047336, A047522, A056020, A084967, A090771, A091998, A144065, A175885-A175887.
For k-rough numbers with other values of k, see A000027, A005408, A007775, A008364-A008366, A166061, A166063.
Cf. A126760 (a left inverse).
Row 3 of A260717 (without the initial 1).
Cf. A105397 (first differences).

Programs

Formula

a(n) = (6*n + (-1)^n - 3)/2. - Antonio Esposito, Jan 18 2002
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4. - Roger L. Bagula
a(n) = 3*n - 1 - (n mod 2). - Zak Seidov, Jan 18 2006
a(1) = 1 then alternatively add 4 and 2. a(1) = 1, a(n) = a(n-1) + 3 + (-1)^n. - Zak Seidov, Mar 25 2006
1 + 1/5^2 + 1/7^2 + 1/11^2 + ... = Pi^2/9 [Jolley]. - Gary W. Adamson, Dec 20 2006
For n >= 3 a(n) = a(n-2) + 6. - Zak Seidov, Apr 18 2007
From R. J. Mathar, May 23 2008: (Start)
Expand (x+x^5)/(1-x^6) = x + x^5 + x^7 + x^11 + x^13 + ...
O.g.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^2). (End)
a(n) = 6*floor(n/2) - 1 + 2*(n mod 2). - Reinhard Zumkeller, Oct 02 2008
1 + 1/5 - 1/7 - 1/11 + + - - ... = Pi/3 = A019670 [Jolley eq (315)]. - Jaume Oliver Lafont, Oct 23 2009
a(n) = ( 6*A062717(n)+1 )^(1/2). - Gary Detlefs, Feb 22 2010
a(n) = 6*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), with n > 1. - Bruno Berselli, Nov 05 2010
a(n) = 6*n - a(n-1) - 6 for n>1, a(1) = 1. - Vincenzo Librandi, Nov 18 2010
Sum_{n >= 1} (-1)^(n+1)/a(n) = A093766 [Jolley eq (84)]. - R. J. Mathar, Mar 24 2011
a(n) = 6*floor(n/2) + (-1)^(n+1). - Gary Detlefs, Dec 29 2011
a(n) = 3*n + ((n+1) mod 2) - 2. - Gary Detlefs, Jan 08 2012
a(n) = 2*n + 1 + 2*floor((n-2)/2) = 2*n - 1 + 2*floor(n/2), leading to the o.g.f. given by R. J. Mathar above. - Wolfdieter Lang, Jan 20 2012
1 - 1/5 + 1/7 - 1/11 + - ... = Pi*sqrt(3)/6 = A093766 (L. Euler). - Philippe Deléham, Mar 09 2013
1 - 1/5^3 + 1/7^3 - 1/11^3 + - ... = Pi^3*sqrt(3)/54 (L. Euler). - Philippe Deléham, Mar 09 2013
gcd(a(n), 6) = 1. - Reinhard Zumkeller, Nov 14 2013
a(n) = sqrt(6*n*(3*n + (-1)^n - 3)-3*(-1)^n + 5)/sqrt(2). - Alexander R. Povolotsky, May 16 2014
a(n) = 3*n + 6/(9*n mod 6 - 6). - Mikk Heidemaa, Feb 05 2016
From Mikk Heidemaa, Feb 11 2016: (Start)
a(n) = 2*floor(3*n/2) - 1.
a(n) = A047238(n+1) - 1. (suggested by Michel Marcus) (End)
E.g.f.: (2 + (6*x - 3)*exp(x) + exp(-x))/2. - Ilya Gutkovskiy, Jun 18 2016
From Bruno Berselli, Apr 27 2017: (Start)
a(k*n) = k*a(n) + (4*k + (-1)^k - 3)/2 for k>0 and odd n, a(k*n) = k*a(n) + k - 1 for even n. Some special cases:
k=2: a(2*n) = 2*a(n) + 3 for odd n, a(2*n) = 2*a(n) + 1 for even n;
k=3: a(3*n) = 3*a(n) + 4 for odd n, a(3*n) = 3*a(n) + 2 for even n;
k=4: a(4*n) = 4*a(n) + 7 for odd n, a(4*n) = 4*a(n) + 3 for even n;
k=5: a(5*n) = 5*a(n) + 8 for odd n, a(5*n) = 5*a(n) + 4 for even n, etc. (End)
From Antti Karttunen, May 20 2017: (Start)
a(A273669(n)) = 5*a(n) = A084967(n).
a((5*n)-3) = A255413(n).
A126760(a(n)) = n. (End)
a(2*m) = 6*m - 1, m >= 1; a(2*m + 1) = 6*m + 1, m >= 0. - Ralf Steiner, May 17 2018
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(3) (A002194).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi/3 (A019670). (End)

A007705 Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.

Original entry on oeis.org

1, 0, 10, 28, 0, 88, 4524, 0, 140692, 820496, 0, 128850048, 1957725000, 0, 605917055356, 13404947681712, 0
Offset: 0

Views

Author

Keywords

Comments

Polya proved (see Ahrens) that the number of solutions to this problem for an m X m board is > 0 iff m is coprime to 6. - Jonathan Vos Post, Feb 20 2005

Examples

			From _Eduard I. Vatutin_, Jan 22 2024: (Start)
N=5=2*2+1 (all 10 solutions are shown below):
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
N=7=2*3+1:
+---------------+
| Q . . . . . . |
| . . . Q . . . |
| . . . . . . Q |
| . . Q . . . . |
| . . . . . Q . |
| . Q . . . . . |
| . . . . Q . . |
+---------------+
N=11=5*2+1:
+-----------------------+
| Q . . . . . . . . . . |
| . . Q . . . . . . . . |
| . . . . Q . . . . . . |
| . . . . . . Q . . . . |
| . . . . . . . . Q . . |
| . . . . . . . . . . Q |
| . Q . . . . . . . . . |
| . . . Q . . . . . . . |
| . . . . . Q . . . . . |
| . . . . . . . Q . . . |
| . . . . . . . . . Q . |
+-----------------------+
N=13=6*2+1 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way):
+---------------------------+ +---------------------------+
| Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . |
| . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . |
| . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . |
| . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . |
| . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . |
| . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . |
| . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q |
| . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . |
| . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . |
| . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . |
| . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . |
| . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . |
| . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . |
+---------------------------+ +---------------------------+
(End)
		

References

  • W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1, B. G. Teubner, Leipzig, 1921, pp. 363-374.
  • R. K. Guy, Unsolved problems in Number Theory, 3rd Edn., Springer, 1994, p. 202 [with extensive bibliography]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesly, 1991, Chapter 6.

Crossrefs

Formula

a(n) = A071607(n) * (2*n+1). - Eduard I. Vatutin, Jan 22 2024, corrected Mar 14 2024
a(n) = A342990(n) / (2n)!. - Eduard I. Vatutin, Apr 09 2024

Extensions

Two more terms from Matthias Engelhardt, Dec 17 1999 and Jan 11 2001
13404947681712 from Matthias Engelhardt, May 01 2005

A071607 Number of strong complete mappings of the cyclic group Z_{2n+1}.

Original entry on oeis.org

1, 0, 2, 4, 0, 8, 348, 0, 8276, 43184, 0, 5602176, 78309000, 0, 20893691564, 432417667152, 0
Offset: 0

Views

Author

J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002

Keywords

Comments

A strong complete mapping of a cyclic group (Z_n,+) is a permutation f(x) of Z_n such that f(0)=0 and that f(x)-x and f(x)+x are both permutations.
a(n) is the number of solutions of the toroidal n-queen problem (A007705) with 2n+1 queens and one queen in the top-left corner.
Also a(n) is the number of horizontally or vertically semicyclic diagonal Latin squares of order 2n+1 with the first row in ascending order. Horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A123565) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d. Definition from A343867 includes this type of squares but not only it. - Eduard I. Vatutin, Jan 25 2022

Examples

			f(x)=2x in (Z_7,+) is a strong complete mapping of Z_7 since f(0)=0 and both f(x)-x (=x) and f(x)+x (=3x) are permutations of Z_7.
From _Eduard I. Vatutin_, Jan 25 2022: (Start)
Example of cyclic diagonal Latin square of order 13:
.
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
.
Example of horizontally semicyclic diagonal Latin square of order 13:
.
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
(End)
From _Eduard I. Vatutin_, Apr 09 2024: (Start)
Example of N-queens problem on toroidal board, N=2*2+1=5, a(2)=2, given by knight with (+1,+2) and (+1,+3) movement parameters starting from top left corner:
.
+-----------+ +-----------+
| Q . . . . | | Q . . . . |
| . . Q . . | | . . . Q . |
| . . . . Q | | . Q . . . |
| . Q . . . | | . . . . Q |
| . . . Q . | | . . Q . . |
+-----------+ +-----------+
.
Example of N-queens problem on toroidal board, N=2*3+1=7, a(3)=4, given by knight with (+1,+2), (+1,+3), (+1,+4), (+1,+5) movement parameters starting from top left corner:
.
+---------------+ +---------------+ +---------------+ +---------------+
| Q . . . . . . | | Q . . . . . . | | Q . . . . . . | | Q . . . . . . |
| . . Q . . . . | | . . . Q . . . | | . . . . Q . . | | . . . . . Q . |
| . . . . Q . . | | . . . . . . Q | | . Q . . . . . | | . . . Q . . . |
| . . . . . . Q | | . . Q . . . . | | . . . . . Q . | | . Q . . . . . |
| . Q . . . . . | | . . . . . Q . | | . . Q . . . . | | . . . . . . Q |
| . . . Q . . . | | . Q . . . . . | | . . . . . . Q | | . . . . Q . . |
| . . . . . Q . | | . . . . Q . . | | . . . Q . . . | | . . Q . . . . |
+---------------+ +---------------+ +---------------+ +---------------+
(End)
		

References

  • Anthony B. Evans,"Orthomorphism Graphs of Groups", vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991.
  • Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.

Crossrefs

Formula

a(n) = A007705(n) / (2*n+1).
a(n) = A342990(n) / (2*n+1)!. - Eduard I. Vatutin, Mar 10 2022
a(n) = A051906(2*n+1) / (2*n+1). - Eduard I. Vatutin, Apr 09 2024

Extensions

a(15)-a(16) added using A007705 by Andrew Howroyd, May 07 2021

A372922 Number of diagonal Latin squares of order 2n+1 that are isomorphic to cyclic Latin squares by row and column permutations.

Original entry on oeis.org

1, 0, 480, 161280, 2229534720, 45984153600000, 3271798279766016000
Offset: 0

Views

Author

Eduard I. Vatutin, May 16 2024

Keywords

Comments

The Latin squares considered here are diagonal Latin squares that are isomorphic to cyclic Latin squares. They are can be obtained from cyclic Latin squares (see A338522) by diagonalization (getting a corresponding pair of transversals and placing them on the diagonals, see article). These Latin squares have some interesting properties, for example, there are a large number of diagonal transversals.

Examples

			The cyclic Latin square of order 7
.
  0 1 2 3 4 5 6
  1 2 3 4 5 6 0
  2 3 4 5 6 0 1
  3 4 5 6 0 1 2
  4 5 6 0 1 2 3
  5 6 0 1 2 3 4
  6 0 1 2 3 4 5
.
has a pair of symmetrically placed transversals T1 = (0, 2, 4, 6, 1, 3, 5) and T2 = (0, 5, 3, 1, 6, 4, 2), after permutting rown and columns transversal T1 placed to the main diagonal with getting single diagonal Latin square
.
  2 5 0 3 4 6 1
  0 3 5 1 2 4 6
  1 4 6 2 3 5 0
  6 2 4 0 1 3 5
  3 6 1 4 5 0 2
  4 0 2 5 6 1 3
  5 1 3 6 0 2 4
.
then after permuting rows and columns transversal T2 placed to the second diagonal with getting diagonal Latin square
.
  2 5 0 3 6 1 4
  0 3 5 1 4 6 2
  1 4 6 2 5 0 3
  6 2 4 0 3 5 1
  4 0 2 5 1 3 6
  5 1 3 6 2 4 0
  3 6 1 4 0 2 5
.
that can be canonized to the following diagonal Latin square:
.
  0 1 2 3 4 5 6
  2 3 1 5 6 4 0
  5 6 4 0 1 2 3
  4 0 6 2 3 1 5
  6 2 0 1 5 3 4
  1 5 3 4 0 6 2
  3 4 5 6 2 0 1
.
Cyclic Latin square of order 11
.
  0 1 2 3 4 5 6 7 8 9 10
  1 2 3 4 5 6 7 8 9 10 0
  2 3 4 5 6 7 8 9 10 0 1
  3 4 5 6 7 8 9 10 0 1 2
  4 5 6 7 8 9 10 0 1 2 3
  5 6 7 8 9 10 0 1 2 3 4
  6 7 8 9 10 0 1 2 3 4 5
  7 8 9 10 0 1 2 3 4 5 6
  8 9 10 0 1 2 3 4 5 6 7
  9 10 0 1 2 3 4 5 6 7 8
  10 0 1 2 3 4 5 6 7 8 9
.
can be diagonalized to set of diagonal Latin squares:
.
  0 1 2 3 4 5 6 7 8 9 10   0 1 2 3 4 5 6 7 8 9 10   0 1 2 3 4 5 6 7 8 9 10
  1 2 3 4 5 10 8 9 0 6 7   1 2 3 4 6 7 8 9 10 0 5   1 2 3 4 5 10 9 0 7 8 6
  3 4 5 10 7 9 1 8 2 0 6   8 10 5 7 9 3 0 4 1 6 2   3 4 5 10 6 9 7 2 1 0 8
  4 5 10 7 9 6 2 0 3 1 8   4 6 8 10 5 1 7 2 9 3 0   10 6 9 8 7 0 2 5 4 3 1
  10 7 9 6 8 0 4 2 5 3 1   9 0 1 2 3 10 4 5 6 7 8   9 8 7 0 1 2 4 6 10 5 3
  7 9 6 8 0 1 5 3 10 4 2   7 9 0 1 2 8 3 10 4 5 6   5 10 6 9 8 7 1 4 3 2 0
  8 0 1 2 3 4 9 10 6 7 5   6 8 10 5 7 2 9 3 0 4 1   7 0 1 2 3 4 10 8 9 6 5
  2 3 4 5 10 7 0 6 1 8 9   10 5 7 9 0 4 1 6 2 8 3   4 5 10 6 9 8 0 3 2 1 7
  5 10 7 9 6 8 3 1 4 2 0   3 4 6 8 10 0 5 1 7 2 9   8 7 0 1 2 3 5 9 6 10 4
  6 8 0 1 2 3 7 5 9 10 4   2 3 4 6 8 9 10 0 5 1 7   6 9 8 7 0 1 3 10 5 4 2
  9 6 8 0 1 2 10 4 7 5 3   5 7 9 0 1 6 2 8 3 10 4   2 3 4 5 10 6 8 1 0 7 9 ...
.
(totally 81 main classes of diagonal Latin squares).
		

Crossrefs

Formula

a(n) = A372923(n) * (2n+1)!. - Eduard I. Vatutin, Sep 08 2024

A366331 Number of main classes of diagonal Latin squares of order 2n+1 that contain a horizontally semicyclic Latin square.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 20, 0, 272, 1208, 0, 127334, 1958084, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 07 2023

Keywords

Comments

A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example).

Examples

			Example of horizontally semicyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
		

Crossrefs

Extensions

a(11)-a(13) from Andrew Howroyd, Nov 02 2023

A366332 Minimum number of diagonal transversals in a semicyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4523, 127339, 0, 204330233, 11232045257, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 07 2023

Keywords

Comments

A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Similarly, a vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i).

Examples

			Example of horizontally semicyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
		

Crossrefs

A366333 a(n) is the number of distinct numbers of diagonal transversals that a semicyclic diagonal Latin square of order 2n+1 can have.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 20, 0, 271, 1208, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 07 2023

Keywords

Comments

A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). A vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A338562) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d.
Semicyclic diagonal Latin squares do not exist for even orders n.

Examples

			For n=6*2+1=13 the number of diagonal transversals that a semicyclic diagonal Latin square of order 13 may have is 127339, 127830, 128489, 128519, 128533, 128608, 128751, 128818, 128861, 129046, 129059, 129171, 129243, 129286, 129353, 129474, 129641, 129657, 130323 or 131106. Since there are 20 distinct values, a(6)=20.
		

Crossrefs

Showing 1-7 of 7 results.