A007705
Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.
Original entry on oeis.org
1, 0, 10, 28, 0, 88, 4524, 0, 140692, 820496, 0, 128850048, 1957725000, 0, 605917055356, 13404947681712, 0
Offset: 0
From _Eduard I. Vatutin_, Jan 22 2024: (Start)
N=5=2*2+1 (all 10 solutions are shown below):
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
N=7=2*3+1:
+---------------+
| Q . . . . . . |
| . . . Q . . . |
| . . . . . . Q |
| . . Q . . . . |
| . . . . . Q . |
| . Q . . . . . |
| . . . . Q . . |
+---------------+
N=11=5*2+1:
+-----------------------+
| Q . . . . . . . . . . |
| . . Q . . . . . . . . |
| . . . . Q . . . . . . |
| . . . . . . Q . . . . |
| . . . . . . . . Q . . |
| . . . . . . . . . . Q |
| . Q . . . . . . . . . |
| . . . Q . . . . . . . |
| . . . . . Q . . . . . |
| . . . . . . . Q . . . |
| . . . . . . . . . Q . |
+-----------------------+
N=13=6*2+1 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way):
+---------------------------+ +---------------------------+
| Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . |
| . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . |
| . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . |
| . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . |
| . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . |
| . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . |
| . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q |
| . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . |
| . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . |
| . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . |
| . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . |
| . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . |
| . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . |
+---------------------------+ +---------------------------+
(End)
- W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1, B. G. Teubner, Leipzig, 1921, pp. 363-374.
- R. K. Guy, Unsolved problems in Number Theory, 3rd Edn., Springer, 1994, p. 202 [with extensive bibliography]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesly, 1991, Chapter 6.
- M. R. Engelhardt, A group-based search for solutions of the n-queens problem, Discr. Math., 307 (2007), 2535-2551.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, pp. 62-63.
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
- Eric Weisstein's World of Mathematics, Queens Problem.
- Eduard I. Vatutin, Numerical formula between number of horizontally or vertically semicyclic diagonal Latin squares and number of toroidal n-queens problem solutions (in Russian).
A051906
Number of ways of placing n nonattacking queens on an n X n toroidal chessboard.
Original entry on oeis.org
1, 0, 0, 0, 10, 0, 28, 0, 0, 0, 88, 0, 4524, 0, 0, 0, 140692, 0, 820496, 0, 0, 0, 128850048, 0, 1957725000, 0, 0, 0, 605917055356, 0, 13404947681712, 0, 0, 0
Offset: 1
From _Eduard I. Vatutin_, Nov 27 2023: (Start)
n=5 (all 10 solutions are shown below):
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
n=7:
+---------------+
| Q . . . . . . |
| . . . Q . . . |
| . . . . . . Q |
| . . Q . . . . |
| . . . . . Q . |
| . Q . . . . . |
| . . . . Q . . |
+---------------+
n=11:
+-----------------------+
| Q . . . . . . . . . . |
| . . Q . . . . . . . . |
| . . . . Q . . . . . . |
| . . . . . . Q . . . . |
| . . . . . . . . Q . . |
| . . . . . . . . . . Q |
| . Q . . . . . . . . . |
| . . . Q . . . . . . . |
| . . . . . Q . . . . . |
| . . . . . . . Q . . . |
| . . . . . . . . . Q . |
+-----------------------+
n=13 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way):
+---------------------------+ +---------------------------+
| Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . |
| . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . |
| . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . |
| . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . |
| . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . |
| . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . |
| . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q |
| . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . |
| . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . |
| . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . |
| . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . |
| . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . |
| . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . |
+---------------------------+ +---------------------------+
(End)
- M. R. Engelhardt, A group-based search for solutions of the n-queens problem, Discr. Math., 307 (2007), 2535-2551.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 62-63.
- Kevin Pratt, Closed-Form Expressions for the n-Queens Problem and Related Problems, arXiv:1609.09585 [cs.DM], 2016.
- I. Rivin, I. Vardi and P. Zimmermann, The n-queens problem, Amer. Math. Monthly, 101 (1994), 629-639.
See
A007705, which is the main entry for this sequence.
A003111
Number of complete mappings of the cyclic group Z_{2n+1}.
Original entry on oeis.org
1, 1, 3, 19, 225, 3441, 79259, 2424195, 94471089, 4613520889, 275148653115, 19686730313955, 1664382756757625
Offset: 0
f(x)=2x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=x) is also a permutation of Z_7.
- Anthony B. Evans, Orthomorphism Graphs of Groups, vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991.
- Y. P. Shieh, Partition strategies for #P-complete problems with applications to enumerative combinatorics, PhD thesis, National Taiwan University, 2001.
- Y. P. Shieh, J. Hsiang and D. F. Hsu, On the enumeration of Abelian k-complete mappings, Vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. Cavenagh and I. M. Wanless, On the number of transversals in Cayley tables of cyclic groups, Disc. Appl. Math. 158 (2010), 136-146.
- Sean Eberhard, F. Manners, and R. Mrazovic, Additive triples of bijections, or the toroidal semiqueens problem, arXiv preprint arXiv:1510.05987 [math.CO], 2015-2016.
- Jieh Hsiang, YuhPyng Shieh, and YaoChiang Chen, Cyclic Complete Mappings Counting Problems, National Taiwan University 2014/8/21.
- J. Hsiang, D. F. Hsu and Y. P. Shieh, On the hardness of counting problems of complete mappings, Discrete Math., 277 (2004), 87-100.
- N. Yu. Kuznetsov, Using the Monte Carlo Method for Fast Simulation of the Number of "Good" Permutations on the SCIT-4 Multiprocessor Computer Complex, Cybernetics and Systems Analysis, January 2016, Volume 52, Issue 1, pp 52-57.
- D. H. Lehmer, Some properties of circulants, J. Number Theory 5 (1973), 43-54.
- B. D. McKay, J. C. McLeod and I. M. Wanless, The number of transversals in a Latin square, Des. Codes Cryptogr., 40, (2006) 269-284.
- D. Novakovic, Computation of the number of complete mappings for permutations, Cybernetics & System Analysis, No. 2, v. 36 (2000), pp. 244-247.
- S. V. S. Ranganathan, D. Divsalar, and R. D. Wesel, On the Girth of (3, L) Quasi-Cyclic LDPC Codes based on Complete Protographs, arXiv preprint arXiv:1504.04975 [cs.IT], 2015.
- Y. P. Shieh, Cyclic complete mappings counting problems
- D. S. Stones and I. M. Wanless, Compound orthomorphisms of the cyclic group, Finite Fields Appl. 16 (2010), 277-289.
- D. S. Stones and I. M. Wanless, A congruence connecting Latin rectangles and partial orthomorphisms, Ann. Comb. 16, No. 2, 349-365 (2012).
More terms from J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
a(12) from Yuh-Pyng Shieh (arping(AT)gmail.com), Jan 10 2006
A342990
Number of horizontally or vertically semicyclic diagonal Latin squares of order 2n+1.
Original entry on oeis.org
1, 0, 240, 20160, 0, 319334400, 2167003238400, 0, 2943669154922496000, 5253122016055001088000, 0, 144827547726179682893168640000, 1214667347283206181421056000000000, 0, 184737047979495031539522261089255424000000, 3555700708206908663181998415125686517760000000, 0
Offset: 0
Example of cyclic diagonal Latin square of order 13:
0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2)
4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4)
6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6)
8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8)
10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10)
12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12)
1 2 3 4 5 6 7 8 9 10 11 12 0 (d=14 == 1 (mod 13))
3 4 5 6 7 8 9 10 11 12 0 1 2 (d=16 == 3 (mod 13))
5 6 7 8 9 10 11 12 0 1 2 3 4 (d=18 == 5 (mod 13))
7 8 9 10 11 12 0 1 2 3 4 5 6 (d=20 == 7 (mod 13))
9 10 11 12 0 1 2 3 4 5 6 7 8 (d=22 == 9 (mod 13))
11 12 0 1 2 3 4 5 6 7 8 9 10 (d=24 == 11 (mod 13))
Example of horizontally semicyclic diagonal Latin square of order 13:
0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2)
4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4)
9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9)
7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7)
12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12)
3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3)
11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11)
6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6)
1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1)
5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5)
10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10)
8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8)
A343867
Number of semicyclic pandiagonal Latin squares of order 2*n+1 with the first row in ascending order.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1560, 0, 34000, 175104, 0, 22417824, 313235960, 0, 83574857328, 1729671003296
Offset: 0
The following is an example of an order 13 semicyclic square with a step of (1,4). This means moving down one row and across by 4 columns increases the cell value by 1 modulo 13. Symbols can be relabeled to give a square with the first row in ascending order.
0 11 1 7 5 9 3 10 4 8 6 12 2
9 7 0 3 1 12 2 8 6 10 4 11 5
11 5 12 6 10 8 1 4 2 0 3 9 7
1 4 10 8 12 6 0 7 11 9 2 5 3
10 3 6 4 2 5 11 9 0 7 1 8 12
8 2 9 0 11 4 7 5 3 6 12 10 1
7 0 11 2 9 3 10 1 12 5 8 6 4
6 9 7 5 8 1 12 3 10 4 11 2 0
5 12 3 1 7 10 8 6 9 2 0 4 11
3 1 5 12 6 0 4 2 8 11 9 7 10
12 10 8 11 4 2 6 0 7 1 5 3 9
2 6 4 10 0 11 9 12 5 3 7 1 8
4 8 2 9 3 7 5 11 1 12 10 0 6
...
a(12) = 4*(A071607(12) - A123565(25)) + 11240. - _Jim White_, Jul 22 2021
a(14) = 4*(A071607(14) - A123565(29)) + 91176. - _Jim White_, Jul 24 2021
a(15) = 4*(A071607(15) - A123565(31)) + 334800. - _Jim White_, Aug 03 2021
- A. O. L. Atkin, L. Hay, and R. G. Larson, Enumeration and construction of pandiagonal Latin squares of prime order, Computers & Mathematics with Applications, Volume. 9, Iss. 2, 1983, pp. 267-292.
- Andrew Howroyd, PARI Program for Initial Terms.
- Natalia Makarova from Harry White, 1560 semi-cyclic Latin squares of order 13.
- Natalia Makarova from Harry White, 34000 semi-cyclic Latin squares of order 17.
- Eduard I. Vatutin, 175104 semi-cyclic Latin squares of order 19.
A338620
Number of pandiagonal Latin squares of order 2n+1 with the first row in ascending order.
Original entry on oeis.org
1, 0, 2, 4, 0, 8, 12386, 0
Offset: 0
Example of a cyclic pandiagonal Latin square of order 5:
0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2
Example of a cyclic pandiagonal Latin square of order 7:
0 1 2 3 4 5 6
2 3 4 5 6 0 1
4 5 6 0 1 2 3
6 0 1 2 3 4 5
1 2 3 4 5 6 0
3 4 5 6 0 1 2
5 6 0 1 2 3 4
Example of a cyclic pandiagonal Latin square of order 11:
0 1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 0 1
4 5 6 7 8 9 10 0 1 2 3
6 7 8 9 10 0 1 2 3 4 5
8 9 10 0 1 2 3 4 5 6 7
10 0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 0
3 4 5 6 7 8 9 10 0 1 2
5 6 7 8 9 10 0 1 2 3 4
7 8 9 10 0 1 2 3 4 5 6
9 10 0 1 2 3 4 5 6 7 8
For order 13 there is a square
7 1 0 3 6 5 12 2 8 9 10 11 4
2 3 4 10 0 7 6 9 12 11 5 8 1
4 11 1 7 8 9 10 3 6 0 12 2 5
6 5 8 11 10 4 7 0 1 2 3 9 12
8 9 2 5 12 11 1 4 3 10 0 6 7
3 6 12 0 1 2 8 11 5 4 7 10 9
10 0 3 2 9 12 5 6 7 8 1 4 11
1 7 10 4 3 6 9 8 2 5 11 12 0
11 4 5 6 7 0 3 10 9 12 2 1 8
5 8 7 1 4 10 11 12 0 6 9 3 2
12 2 9 8 11 1 0 7 10 3 4 5 6
9 10 11 12 5 8 2 1 4 7 6 0 3
0 12 6 9 2 3 4 5 11 1 8 7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu).
- A. O. L. Atkin, L. Hay, and R. G. Larson, Enumeration and construction of pandiagonal Latin squares of prime order, Computers & Mathematics with Applications, Volume. 9, Iss. 2, 1983, pp. 267-292.
- Vahid Dabbaghian and Tiankuang Wu, Constructing non-cyclic pandiagonal Latin squares of prime orders, Journal of Discrete Algorithms 30, 2015.
- Vahid Dabbaghian and Tiankuang Wu, Constructing Pandiagonal Latin Squares from Linear Cellular Automaton on Elementary Abelian Groups, Journal of Combinatorial Designs 23(5).
A372923
Number of diagonalized cyclic diagonal Latin squares of order 2n+1 with the first row in order.
Original entry on oeis.org
1, 0, 4, 32, 6144, 1152000, 45984153600000
Offset: 0
- Eduard I. Vatutin, Special types of diagonal Latin squares, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
- Eduard I. Vatutin, About the different types of cyclic diagonal Latin squares (in Russian).
- E. Vatutin, A. Belyshev, N. Nikitina, M. Manzuk, A. Albertian, I. Kurochkin, A. Kripachev, and A. Pykhtin, Diagonalization and Canonization of Latin Squares, Lecture Notes in Computer Science, Vol. 14389, Springer, Cham., 2023. pp. 48-61.
- Index entries for sequences related to Latin squares and rectangles.
A366331
Number of main classes of diagonal Latin squares of order 2n+1 that contain a horizontally semicyclic Latin square.
Original entry on oeis.org
1, 0, 1, 1, 0, 2, 20, 0, 272, 1208, 0, 127334, 1958084, 0
Offset: 0
Example of horizontally semicyclic diagonal Latin square of order 13:
0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2)
4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4)
9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9)
7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7)
12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12)
3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3)
11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11)
6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6)
1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1)
5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5)
10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10)
8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8)
A366332
Minimum number of diagonal transversals in a semicyclic diagonal Latin square of order 2n+1.
Original entry on oeis.org
1, 0, 5, 27, 0, 4523, 127339, 0, 204330233, 11232045257, 0
Offset: 0
Example of horizontally semicyclic diagonal Latin square of order 13:
0 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 0 1 (d=2)
4 5 6 7 8 9 10 11 12 0 1 2 3 (d=4)
9 10 11 12 0 1 2 3 4 5 6 7 8 (d=9)
7 8 9 10 11 12 0 1 2 3 4 5 6 (d=7)
12 0 1 2 3 4 5 6 7 8 9 10 11 (d=12)
3 4 5 6 7 8 9 10 11 12 0 1 2 (d=3)
11 12 0 1 2 3 4 5 6 7 8 9 10 (d=11)
6 7 8 9 10 11 12 0 1 2 3 4 5 (d=6)
1 2 3 4 5 6 7 8 9 10 11 12 0 (d=1)
5 6 7 8 9 10 11 12 0 1 2 3 4 (d=5)
10 11 12 0 1 2 3 4 5 6 7 8 9 (d=10)
8 9 10 11 12 0 1 2 3 4 5 6 7 (d=8)
A006204
Number of starters in cyclic group of order 2n+1.
Original entry on oeis.org
1, 1, 3, 9, 25, 133, 631, 3857, 25905, 188181, 1515283, 13376125, 128102625, 1317606101, 14534145947, 170922533545, 2138089212789
Offset: 1
f(x)=6x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=5x) is also a permutation of Z_7. f^(-1)(x)=6x=f(x). So f(x) is fixed under reflection.
- CRC Handbook of Combinatorial Designs, 1996, p. 469.
- CRC Handbook of Combinatorial Designs, 2nd edition, 2007, p. 624.
- J. D. Horton, Orthogonal starters in finite Abelian groups, Discrete Math., 79 (1989/1990), 265-278.
- V. Linja-aho and Patric R. J. Östergård, Classification of starters, J. Combin. Math. Combin. Comput. 75 (2010), 153-159.
- Y. P. Shieh, "Partition strategies for #P-complete problems with applications to enumerative combinatorics", PhD thesis, National Taiwan University, 2001.
- Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Bill Butler, Durango Bill's Bridge Probabilities and Combinatorics
- Jieh Hsiang, Yuhpyng Shieh, Yaochiang Chen, Cyclic complete mappings counting problems, National Taiwan University, Taipei, April 2003.
- Vesa Linja-aho, Patric R. J. Östergård, Classification of starters, J. Combin. Math. Combin. Comput. 75 (2010), 153-159.
Additional comments and one more term from J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
Extended by Vesa Linja-aho (vesa.linja-aho(AT)tkk.fi), May 06 2009
Showing 1-10 of 11 results.
Comments