cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007705 Number of ways of arranging 2n+1 nonattacking queens on a 2n+1 X 2n+1 toroidal board.

Original entry on oeis.org

1, 0, 10, 28, 0, 88, 4524, 0, 140692, 820496, 0, 128850048, 1957725000, 0, 605917055356, 13404947681712, 0
Offset: 0

Views

Author

Keywords

Comments

Polya proved (see Ahrens) that the number of solutions to this problem for an m X m board is > 0 iff m is coprime to 6. - Jonathan Vos Post, Feb 20 2005

Examples

			From _Eduard I. Vatutin_, Jan 22 2024: (Start)
N=5=2*2+1 (all 10 solutions are shown below):
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
N=7=2*3+1:
+---------------+
| Q . . . . . . |
| . . . Q . . . |
| . . . . . . Q |
| . . Q . . . . |
| . . . . . Q . |
| . Q . . . . . |
| . . . . Q . . |
+---------------+
N=11=5*2+1:
+-----------------------+
| Q . . . . . . . . . . |
| . . Q . . . . . . . . |
| . . . . Q . . . . . . |
| . . . . . . Q . . . . |
| . . . . . . . . Q . . |
| . . . . . . . . . . Q |
| . Q . . . . . . . . . |
| . . . Q . . . . . . . |
| . . . . . Q . . . . . |
| . . . . . . . Q . . . |
| . . . . . . . . . Q . |
+-----------------------+
N=13=6*2+1 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way):
+---------------------------+ +---------------------------+
| Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . |
| . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . |
| . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . |
| . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . |
| . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . |
| . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . |
| . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q |
| . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . |
| . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . |
| . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . |
| . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . |
| . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . |
| . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . |
+---------------------------+ +---------------------------+
(End)
		

References

  • W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. 1, B. G. Teubner, Leipzig, 1921, pp. 363-374.
  • R. K. Guy, Unsolved problems in Number Theory, 3rd Edn., Springer, 1994, p. 202 [with extensive bibliography]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ilan Vardi, Computational Recreations in Mathematica, Addison-Wesly, 1991, Chapter 6.

Crossrefs

Formula

a(n) = A071607(n) * (2*n+1). - Eduard I. Vatutin, Jan 22 2024, corrected Mar 14 2024
a(n) = A342990(n) / (2n)!. - Eduard I. Vatutin, Apr 09 2024

Extensions

Two more terms from Matthias Engelhardt, Dec 17 1999 and Jan 11 2001
13404947681712 from Matthias Engelhardt, May 01 2005

A051906 Number of ways of placing n nonattacking queens on an n X n toroidal chessboard.

Original entry on oeis.org

1, 0, 0, 0, 10, 0, 28, 0, 0, 0, 88, 0, 4524, 0, 0, 0, 140692, 0, 820496, 0, 0, 0, 128850048, 0, 1957725000, 0, 0, 0, 605917055356, 0, 13404947681712, 0, 0, 0
Offset: 1

Views

Author

Matthias Engelhardt, Dec 17 1999

Keywords

Comments

The sequence has been computed up to n = 23 by Rivin, Vardi & Zimmermann, see p. 637 of their paper from 1994. Further terms were calculated by the submitter, Dec 17 1999 and Jan 11 2001.
a(n) is divisible by n.
Only terms indexed by odd numbers coprime to 3 are nonzero, therefore A007705(n) = a(2n+1) is the main entry. - M. F. Hasler, Jul 01 2019
From Eduard I. Vatutin, Nov 27 2023: (Start)
For n <= 11 all solutions can be found using a knight moving with some displacements dx and dy starting from some cell with coordinates (x,y): (x,y) -> (x+dx,y+dy) -> (x+2*dx,y+2*dy) -> ... -> (x,y) (all operations modulo n). For n >= 13 some solutions are same, but not all (see examples).
All solutions of n-queens problem on toroidal chessboard are also solutions of n-queens problem on classical chessboard; the converse is not true, so a(n) <= A000170(n).
(End)

Examples

			From _Eduard I. Vatutin_, Nov 27 2023: (Start)
n=5 (all 10 solutions are shown below):
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| Q . . . . | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | Q . . . . |
| . . . . Q | | . Q . . . | | Q . . . . | | . . Q . . | | . . . Q . |
| . Q . . . | | . . . . Q | | . . Q . . | | Q . . . . | | . Q . . . |
| . . . Q . | | . . Q . . | | . . . . Q | | . . . Q . | | . . . . Q |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
| . . Q . . | | . . . Q . | | . . . Q . | | . . . . Q | | . . . . Q |
| . . . . Q | | Q . . . . | | . Q . . . | | . Q . . . | | . . Q . . |
| . Q . . . | | . . Q . . | | . . . . Q | | . . . Q . | | Q . . . . |
| . . . Q . | | . . . . Q | | . . Q . . | | Q . . . . | | . . . Q . |
| Q . . . . | | . Q . . . | | Q . . . . | | . . Q . . | | . Q . . . |
+-----------+ +-----------+ +-----------+ +-----------+ +-----------+
n=7:
+---------------+
| Q . . . . . . |
| . . . Q . . . |
| . . . . . . Q |
| . . Q . . . . |
| . . . . . Q . |
| . Q . . . . . |
| . . . . Q . . |
+---------------+
n=11:
+-----------------------+
| Q . . . . . . . . . . |
| . . Q . . . . . . . . |
| . . . . Q . . . . . . |
| . . . . . . Q . . . . |
| . . . . . . . . Q . . |
| . . . . . . . . . . Q |
| . Q . . . . . . . . . |
| . . . Q . . . . . . . |
| . . . . . Q . . . . . |
| . . . . . . . Q . . . |
| . . . . . . . . . Q . |
+-----------------------+
n=13 (first example can be found using a knight moving from cell (1,1) with dx=1 and dy=2, second example can't be obtained in the same way):
+---------------------------+ +---------------------------+
| Q . . . . . . . . . . . . | | Q . . . . . . . . . . . . |
| . . Q . . . . . . . . . . | | . . Q . . . . . . . . . . |
| . . . . Q . . . . . . . . | | . . . . Q . . . . . . . . |
| . . . . . . Q . . . . . . | | . . . . . . Q . . . . . . |
| . . . . . . . . Q . . . . | | . . . . . . . . . . . Q . |
| . . . . . . . . . . Q . . | | . . . . . . . . . Q . . . |
| . . . . . . . . . . . . Q | | . . . . . . . . . . . . Q |
| . Q . . . . . . . . . . . | | . . . . . Q . . . . . . . |
| . . . Q . . . . . . . . . | | . . . Q . . . . . . . . . |
| . . . . . Q . . . . . . . | | . Q . . . . . . . . . . . |
| . . . . . . . Q . . . . . | | . . . . . . . Q . . . . . |
| . . . . . . . . . Q . . . | | . . . . . . . . . . Q . . |
| . . . . . . . . . . . Q . | | . . . . . . . . Q . . . . |
+---------------------------+ +---------------------------+
(End)
		

Crossrefs

See A007705, which is the main entry for this sequence.

Formula

a(n) = A071607((n-1)/2) * n for odd n. - Eduard I. Vatutin, Nov 27 2023, corrected Apr 10 2024

Extensions

Term a(31) added from A007705 by Vaclav Kotesovec, Aug 25 2012

A003111 Number of complete mappings of the cyclic group Z_{2n+1}.

Original entry on oeis.org

1, 1, 3, 19, 225, 3441, 79259, 2424195, 94471089, 4613520889, 275148653115, 19686730313955, 1664382756757625
Offset: 0

Views

Author

Keywords

Comments

A complete mapping of a cyclic group (Z_n,+) is a permutation f(x) of Z_n such that f(0)=0 and such that f(x)-x is also a permutation.
a(n)=TSQ(n)/n where TSQ(n) is the number of solutions of the toroidal semi-n-queen problem (A006717 is the sequence TSQ(2k-1)).
Stated another way, this is the number of "good" permutations on 2n+1 elements (see A006717) that start with 0. [Novakovich]. - N. J. A. Sloane, Feb 22 2011

Examples

			f(x)=2x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=x) is also a permutation of Z_7.
		

References

  • Anthony B. Evans, Orthomorphism Graphs of Groups, vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991.
  • Y. P. Shieh, Partition strategies for #P-complete problems with applications to enumerative combinatorics, PhD thesis, National Taiwan University, 2001.
  • Y. P. Shieh, J. Hsiang and D. F. Hsu, On the enumeration of Abelian k-complete mappings, Vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Suppose n is odd and let b(n)=a((n-1)/2). Then b(n) is odd; if n>3 and n is not 1 mod 3 then b(n) is divisible by 3; b(n)=-2 mod n in n is prime; b(n) is divisible by n if n is composite; b(n) is asymptotically in between 3.2^n and 0.62^n n!. [Cavenagh, Wanless], [McKay, McLeod, Wanless], [Stones, Wanless]. - Ian Wanless, Jul 30 2010
a(n) = A003109(n) + A003110(n). - Sean A. Irvine, Jan 30 2015
a(n) = A006609(2*n+2), n>0. - Sean A. Irvine, Jan 30 2015
From Vaclav Kotesovec, Jul 22 2023: (Start)
a(n) ~ exp(-1/2) * (2*n)!^2 / (2*n + 1)^(2*n - 1). [Eberhard, Manners, Mrazovic, 2016, Theorem 1.3, n->2*n+1]
a(n) ~ Pi * 2^(2*n + 3) * n^(2*n + 2) / exp(4*n + 3/2). (End)

Extensions

More terms from J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
a(12) from Yuh-Pyng Shieh (arping(AT)gmail.com), Jan 10 2006

A342990 Number of horizontally or vertically semicyclic diagonal Latin squares of order 2n+1.

Original entry on oeis.org

1, 0, 240, 20160, 0, 319334400, 2167003238400, 0, 2943669154922496000, 5253122016055001088000, 0, 144827547726179682893168640000, 1214667347283206181421056000000000, 0, 184737047979495031539522261089255424000000, 3555700708206908663181998415125686517760000000, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Jan 27 2022

Keywords

Comments

Horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A338562) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d. Definition from A343867 includes this type of squares but not only it.

Examples

			Example of cyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=14 ==  1 (mod 13))
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=16 ==  3 (mod 13))
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=18 ==  5 (mod 13))
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=20 ==  7 (mod 13))
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=22 ==  9 (mod 13))
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=24 == 11 (mod 13))
Example of horizontally semicyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
		

Crossrefs

Formula

a(n) = A071607(n) * (2*n+1)!.
a(n) = A007705(n) * (2n)!. - Eduard I. Vatutin, Mar 15 2024

A343867 Number of semicyclic pandiagonal Latin squares of order 2*n+1 with the first row in ascending order.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1560, 0, 34000, 175104, 0, 22417824, 313235960, 0, 83574857328, 1729671003296
Offset: 0

Views

Author

Andrew Howroyd, May 08 2021

Keywords

Comments

Pandiagonal Latin squares exist only for odd orders not divisible by 3. All pandiagonal Latin squares for orders less than 13 are cyclic which are not counted by this sequence.
Semicyclic Latin squares are defined in the Atkin reference where the first nonzero term of this sequence is given. They are cyclic in a single direction. The direction can be horizontal or vertical or any other step such as a knights move.
Each symbol in a semicyclic Latin square occupies the same pattern of squares up to translation on the torus which in the case of a pandiagonal square is a solution to the toroidal n-queens problem.
For prime 2n+1, a(n) is a multiple of 2n+1.

Examples

			The following is an example of an order 13 semicyclic square with a step of (1,4). This means moving down one row and across by 4 columns increases the cell value by 1 modulo 13. Symbols can be relabeled to give a square with the first row in ascending order.
   0 11  1  7  5  9  3 10  4  8  6 12  2
   9  7  0  3  1 12  2  8  6 10  4 11  5
  11  5 12  6 10  8  1  4  2  0  3  9  7
   1  4 10  8 12  6  0  7 11  9  2  5  3
  10  3  6  4  2  5 11  9  0  7  1  8 12
   8  2  9  0 11  4  7  5  3  6 12 10  1
   7  0 11  2  9  3 10  1 12  5  8  6  4
   6  9  7  5  8  1 12  3 10  4 11  2  0
   5 12  3  1  7 10  8  6  9  2  0  4 11
   3  1  5 12  6  0  4  2  8 11  9  7 10
  12 10  8 11  4  2  6  0  7  1  5  3  9
   2  6  4 10  0 11  9 12  5  3  7  1  8
   4  8  2  9  3  7  5 11  1 12 10  0  6
...
a(12) = 4*(A071607(12) - A123565(25)) + 11240. - _Jim White_, Jul 22 2021
a(14) = 4*(A071607(14) - A123565(29)) + 91176. - _Jim White_, Jul 24 2021
a(15) = 4*(A071607(15) - A123565(31)) + 334800. - _Jim White_, Aug 03 2021
		

Crossrefs

Cf. A071607, A123565 (cyclic), A338620, A343868.

Programs

  • PARI
    \\ See Links

Formula

a(n) >= 4*(A071607(n) - A123565(2*n+1)).

Extensions

a(12)-a(15) from Jim White, Aug 03 2021

A338620 Number of pandiagonal Latin squares of order 2n+1 with the first row in ascending order.

Original entry on oeis.org

1, 0, 2, 4, 0, 8, 12386, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Nov 04 2020

Keywords

Comments

A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
For orders n = 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A123565(2n+1) for n < 6. For n=6 (order 13), this is not true and there are 12386 inequivalent squares; of these 10 are cyclic (in all directions) and 1560 are semi-cyclic (A343867).
Pandiagonal Latin squares exist only for odd orders not divisible by 3. This is because the positions of each symbol are a solution to the toroidal n-queens problem which only has solutions for these sizes. - Andrew Howroyd, May 26 2021

Examples

			Example of a cyclic pandiagonal Latin square of order 5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
Example of a cyclic pandiagonal Latin square of order 7:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
Example of a cyclic pandiagonal Latin square of order 11:
   0  1  2  3  4  5  6  7  8  9 10
   2  3  4  5  6  7  8  9 10  0  1
   4  5  6  7  8  9 10  0  1  2  3
   6  7  8  9 10  0  1  2  3  4  5
   8  9 10  0  1  2  3  4  5  6  7
  10  0  1  2  3  4  5  6  7  8  9
   1  2  3  4  5  6  7  8  9 10  0
   3  4  5  6  7  8  9 10  0  1  2
   5  6  7  8  9 10  0  1  2  3  4
   7  8  9 10  0  1  2  3  4  5  6
   9 10  0  1  2  3  4  5  6  7  8
For order 13 there is a square
   7  1  0  3  6  5 12  2  8  9 10 11  4
   2  3  4 10  0  7  6  9 12 11  5  8  1
   4 11  1  7  8  9 10  3  6  0 12  2  5
   6  5  8 11 10  4  7  0  1  2  3  9 12
   8  9  2  5 12 11  1  4  3 10  0  6  7
   3  6 12  0  1  2  8 11  5  4  7 10  9
  10  0  3  2  9 12  5  6  7  8  1  4 11
   1  7 10  4  3  6  9  8  2  5 11 12  0
  11  4  5  6  7  0  3 10  9 12  2  1  8
   5  8  7  1  4 10 11 12  0  6  9  3  2
  12  2  9  8 11  1  0  7 10  3  4  5  6
   9 10 11 12  5  8  2  1  4  7  6  0  3
   0 12  6  9  2  3  4  5 11  1  8  7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu).
		

Crossrefs

Cf. A071607 (rows are cyclic), A123565, A342306, A343867 (semicyclic).

Formula

a(n) >= A123565(2n+1) + A343867(n). - Andrew Howroyd, May 26 2021
a(n) = A342306(n) / (2n+1)!. - Eduard I. Vatutin, Jun 13 2021

Extensions

Zero terms for even orders removed by Andrew Howroyd, May 26 2021

A372923 Number of diagonalized cyclic diagonal Latin squares of order 2n+1 with the first row in order.

Original entry on oeis.org

1, 0, 4, 32, 6144, 1152000, 45984153600000
Offset: 0

Views

Author

Eduard I. Vatutin, May 16 2024

Keywords

Comments

See Comments in A372922.

Crossrefs

Formula

a(n) = A372922(n) / (2n+1)!. - Eduard I. Vatutin, Sep 08 2024

A366331 Number of main classes of diagonal Latin squares of order 2n+1 that contain a horizontally semicyclic Latin square.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 20, 0, 272, 1208, 0, 127334, 1958084, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 07 2023

Keywords

Comments

A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example).

Examples

			Example of horizontally semicyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
		

Crossrefs

Extensions

a(11)-a(13) from Andrew Howroyd, Nov 02 2023

A366332 Minimum number of diagonal transversals in a semicyclic diagonal Latin square of order 2n+1.

Original entry on oeis.org

1, 0, 5, 27, 0, 4523, 127339, 0, 204330233, 11232045257, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Oct 07 2023

Keywords

Comments

A horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Similarly, a vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i).

Examples

			Example of horizontally semicyclic diagonal Latin square of order 13:
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
		

Crossrefs

A006204 Number of starters in cyclic group of order 2n+1.

Original entry on oeis.org

1, 1, 3, 9, 25, 133, 631, 3857, 25905, 188181, 1515283, 13376125, 128102625, 1317606101, 14534145947, 170922533545, 2138089212789
Offset: 1

Views

Author

Keywords

Comments

A complete mapping of a cyclic group (Z_m,+) is a permutation f(x) of Z_m with f(0)=0 such that f(x)-x is also a permutation. a(n) is the number of complete mappings f(x) of the cyclic group Z_{2n+1} such that f^(-1)=f.
In other words, a(n) is the number of complete mappings fixed under the reflection operator R, where R(f)=f^(-1). Reflection R is not only a symmetry operator of complete mappings, but also one of the (Toroidal)-(semi) N-Queen problems and of the strong complete mappings problem.

Examples

			f(x)=6x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=5x) is also a permutation of Z_7. f^(-1)(x)=6x=f(x). So f(x) is fixed under reflection.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 469.
  • CRC Handbook of Combinatorial Designs, 2nd edition, 2007, p. 624.
  • J. D. Horton, Orthogonal starters in finite Abelian groups, Discrete Math., 79 (1989/1990), 265-278.
  • V. Linja-aho and Patric R. J. Östergård, Classification of starters, J. Combin. Math. Combin. Comput. 75 (2010), 153-159.
  • Y. P. Shieh, "Partition strategies for #P-complete problems with applications to enumerative combinatorics", PhD thesis, National Taiwan University, 2001.
  • Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Additional comments and one more term from J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
Corrected and extended by Roland Bacher, Dec 18 2007
Extended by Vesa Linja-aho (vesa.linja-aho(AT)tkk.fi), May 06 2009
Showing 1-10 of 11 results. Next