cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A071607 Number of strong complete mappings of the cyclic group Z_{2n+1}.

Original entry on oeis.org

1, 0, 2, 4, 0, 8, 348, 0, 8276, 43184, 0, 5602176, 78309000, 0, 20893691564, 432417667152, 0
Offset: 0

Views

Author

J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002

Keywords

Comments

A strong complete mapping of a cyclic group (Z_n,+) is a permutation f(x) of Z_n such that f(0)=0 and that f(x)-x and f(x)+x are both permutations.
a(n) is the number of solutions of the toroidal n-queen problem (A007705) with 2n+1 queens and one queen in the top-left corner.
Also a(n) is the number of horizontally or vertically semicyclic diagonal Latin squares of order 2n+1 with the first row in ascending order. Horizontally semicyclic diagonal Latin square is a square where each row r(i) is a cyclic shift of the first row r(0) by some value d(i) (see example). Vertically semicyclic diagonal Latin square is a square where each column c(i) is a cyclic shift of the first column c(0) by some value d(i). Cyclic diagonal Latin squares (see A123565) fall under the definition of vertically and horizontally semicyclic diagonal Latin squares simultaneously, in this type of squares each row r(i) is obtained from the previous one r(i-1) using cyclic shift by some value d. Definition from A343867 includes this type of squares but not only it. - Eduard I. Vatutin, Jan 25 2022

Examples

			f(x)=2x in (Z_7,+) is a strong complete mapping of Z_7 since f(0)=0 and both f(x)-x (=x) and f(x)+x (=3x) are permutations of Z_7.
From _Eduard I. Vatutin_, Jan 25 2022: (Start)
Example of cyclic diagonal Latin square of order 13:
.
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
.
Example of horizontally semicyclic diagonal Latin square of order 13:
.
   0  1  2  3  4  5  6  7  8  9 10 11 12
   2  3  4  5  6  7  8  9 10 11 12  0  1  (d=2)
   4  5  6  7  8  9 10 11 12  0  1  2  3  (d=4)
   9 10 11 12  0  1  2  3  4  5  6  7  8  (d=9)
   7  8  9 10 11 12  0  1  2  3  4  5  6  (d=7)
  12  0  1  2  3  4  5  6  7  8  9 10 11  (d=12)
   3  4  5  6  7  8  9 10 11 12  0  1  2  (d=3)
  11 12  0  1  2  3  4  5  6  7  8  9 10  (d=11)
   6  7  8  9 10 11 12  0  1  2  3  4  5  (d=6)
   1  2  3  4  5  6  7  8  9 10 11 12  0  (d=1)
   5  6  7  8  9 10 11 12  0  1  2  3  4  (d=5)
  10 11 12  0  1  2  3  4  5  6  7  8  9  (d=10)
   8  9 10 11 12  0  1  2  3  4  5  6  7  (d=8)
(End)
From _Eduard I. Vatutin_, Apr 09 2024: (Start)
Example of N-queens problem on toroidal board, N=2*2+1=5, a(2)=2, given by knight with (+1,+2) and (+1,+3) movement parameters starting from top left corner:
.
+-----------+ +-----------+
| Q . . . . | | Q . . . . |
| . . Q . . | | . . . Q . |
| . . . . Q | | . Q . . . |
| . Q . . . | | . . . . Q |
| . . . Q . | | . . Q . . |
+-----------+ +-----------+
.
Example of N-queens problem on toroidal board, N=2*3+1=7, a(3)=4, given by knight with (+1,+2), (+1,+3), (+1,+4), (+1,+5) movement parameters starting from top left corner:
.
+---------------+ +---------------+ +---------------+ +---------------+
| Q . . . . . . | | Q . . . . . . | | Q . . . . . . | | Q . . . . . . |
| . . Q . . . . | | . . . Q . . . | | . . . . Q . . | | . . . . . Q . |
| . . . . Q . . | | . . . . . . Q | | . Q . . . . . | | . . . Q . . . |
| . . . . . . Q | | . . Q . . . . | | . . . . . Q . | | . Q . . . . . |
| . Q . . . . . | | . . . . . Q . | | . . Q . . . . | | . . . . . . Q |
| . . . Q . . . | | . Q . . . . . | | . . . . . . Q | | . . . . Q . . |
| . . . . . Q . | | . . . . Q . . | | . . . Q . . . | | . . Q . . . . |
+---------------+ +---------------+ +---------------+ +---------------+
(End)
		

References

  • Anthony B. Evans,"Orthomorphism Graphs of Groups", vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991.
  • Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.

Crossrefs

Formula

a(n) = A007705(n) / (2*n+1).
a(n) = A342990(n) / (2*n+1)!. - Eduard I. Vatutin, Mar 10 2022
a(n) = A051906(2*n+1) / (2*n+1). - Eduard I. Vatutin, Apr 09 2024

Extensions

a(15)-a(16) added using A007705 by Andrew Howroyd, May 07 2021

A342306 Number of pandiagonal Latin squares of order 2n+1.

Original entry on oeis.org

1, 0, 240, 20160, 0, 319334400, 77127879628800, 0
Offset: 0

Views

Author

Eduard I. Vatutin, Mar 08 2021

Keywords

Comments

A pandiagonal Latin square is a Latin square in which the diagonal, antidiagonal and all broken diagonals and antidiagonals are transversals.
For orders 5, 7 and 11 all pandiagonal Latin squares are cyclic, so a(n) = A338562(n) for n < 6. For n=6 (order 13) this is not true (from Dabbaghian and Wu).
Pandiagonal Latin squares exist only for odd orders not divisible by 3. - Andrew Howroyd, May 26 2021

Examples

			Example of a cyclic pandiagonal Latin square of order 5:
  0 1 2 3 4
  2 3 4 0 1
  4 0 1 2 3
  1 2 3 4 0
  3 4 0 1 2
Example of a cyclic pandiagonal Latin square of order 7:
  0 1 2 3 4 5 6
  2 3 4 5 6 0 1
  4 5 6 0 1 2 3
  6 0 1 2 3 4 5
  1 2 3 4 5 6 0
  3 4 5 6 0 1 2
  5 6 0 1 2 3 4
Example of a cyclic pandiagonal Latin square of order 11:
   0  1  2  3  4  5  6  7  8  9 10
   2  3  4  5  6  7  8  9 10  0  1
   4  5  6  7  8  9 10  0  1  2  3
   6  7  8  9 10  0  1  2  3  4  5
   8  9 10  0  1  2  3  4  5  6  7
  10  0  1  2  3  4  5  6  7  8  9
   1  2  3  4  5  6  7  8  9 10  0
   3  4  5  6  7  8  9 10  0  1  2
   5  6  7  8  9 10  0  1  2  3  4
   7  8  9 10  0  1  2  3  4  5  6
   9 10  0  1  2  3  4  5  6  7  8
For order 13 there is a square
   7  1  0  3  6  5 12  2  8  9 10 11  4
   2  3  4 10  0  7  6  9 12 11  5  8  1
   4 11  1  7  8  9 10  3  6  0 12  2  5
   6  5  8 11 10  4  7  0  1  2  3  9 12
   8  9  2  5 12 11  1  4  3 10  0  6  7
   3  6 12  0  1  2  8 11  5  4  7 10  9
  10  0  3  2  9 12  5  6  7  8  1  4 11
   1  7 10  4  3  6  9  8  2  5 11 12  0
  11  4  5  6  7  0  3 10  9 12  2  1  8
   5  8  7  1  4 10 11 12  0  6  9  3  2
  12  2  9  8 11  1  0  7 10  3  4  5  6
   9 10 11 12  5  8  2  1  4  7  6  0  3
   0 12  6  9  2  3  4  5 11  1  8  7 10
that is pandiagonal but not cyclic (Dabbaghian and Wu).
		

Crossrefs

Formula

a(n) = A338620(n) * (2*n+1)!.

Extensions

Zero terms for even orders removed by Andrew Howroyd, May 26 2021

A343867 Number of semicyclic pandiagonal Latin squares of order 2*n+1 with the first row in ascending order.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1560, 0, 34000, 175104, 0, 22417824, 313235960, 0, 83574857328, 1729671003296
Offset: 0

Views

Author

Andrew Howroyd, May 08 2021

Keywords

Comments

Pandiagonal Latin squares exist only for odd orders not divisible by 3. All pandiagonal Latin squares for orders less than 13 are cyclic which are not counted by this sequence.
Semicyclic Latin squares are defined in the Atkin reference where the first nonzero term of this sequence is given. They are cyclic in a single direction. The direction can be horizontal or vertical or any other step such as a knights move.
Each symbol in a semicyclic Latin square occupies the same pattern of squares up to translation on the torus which in the case of a pandiagonal square is a solution to the toroidal n-queens problem.
For prime 2n+1, a(n) is a multiple of 2n+1.

Examples

			The following is an example of an order 13 semicyclic square with a step of (1,4). This means moving down one row and across by 4 columns increases the cell value by 1 modulo 13. Symbols can be relabeled to give a square with the first row in ascending order.
   0 11  1  7  5  9  3 10  4  8  6 12  2
   9  7  0  3  1 12  2  8  6 10  4 11  5
  11  5 12  6 10  8  1  4  2  0  3  9  7
   1  4 10  8 12  6  0  7 11  9  2  5  3
  10  3  6  4  2  5 11  9  0  7  1  8 12
   8  2  9  0 11  4  7  5  3  6 12 10  1
   7  0 11  2  9  3 10  1 12  5  8  6  4
   6  9  7  5  8  1 12  3 10  4 11  2  0
   5 12  3  1  7 10  8  6  9  2  0  4 11
   3  1  5 12  6  0  4  2  8 11  9  7 10
  12 10  8 11  4  2  6  0  7  1  5  3  9
   2  6  4 10  0 11  9 12  5  3  7  1  8
   4  8  2  9  3  7  5 11  1 12 10  0  6
...
a(12) = 4*(A071607(12) - A123565(25)) + 11240. - _Jim White_, Jul 22 2021
a(14) = 4*(A071607(14) - A123565(29)) + 91176. - _Jim White_, Jul 24 2021
a(15) = 4*(A071607(15) - A123565(31)) + 334800. - _Jim White_, Aug 03 2021
		

Crossrefs

Cf. A071607, A123565 (cyclic), A338620, A343868.

Programs

  • PARI
    \\ See Links

Formula

a(n) >= 4*(A071607(n) - A123565(2*n+1)).

Extensions

a(12)-a(15) from Jim White, Aug 03 2021
Showing 1-3 of 3 results.