A006717
Number of ways of arranging 2n+1 nonattacking semi-queens on a (2n+1) X (2n+1) toroidal board.
Original entry on oeis.org
1, 3, 15, 133, 2025, 37851, 1030367, 36362925, 1606008513, 87656896891, 5778121715415, 452794797220965, 41609568918940625
Offset: 0
- Yuh Pyng Shieh, Jieh Hsiang and D. Frank Hsu, On the enumeration of Abelian k-complete mappings, vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
- Yuh Pyng Shieh, Partition Strategies for #P-complete problem with applications to enumerative combinatorics, PhD thesis, National Taiwan University, 2001.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 118.
- Christian Carley, The Name Tag Problem, Mathematics Undergraduate Theses (Boise State University, 2019).
- N. J. Cavenagh and I. M. Wanless, On the number of transversals in Cayley tables of cyclic groups, Disc. Appl. Math. 158 (2010), 136-146.
- S. Eberhard, F. Manners, and R. Mrazovic, Additive Triples of Bijections, or the Toroidal Semiqueens Problem , arxiv:1510.05987, [math.CO], 2016.
- Jieh Hsiang, YuhPyng Shieh, and YaoChiang Chen, Cyclic Complete Mappings Counting Problems, National Taiwan University 2014/8/21.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013.
- N. Yu. Kuznetsov, Using the Monte Carlo Method for Fast Simulation of the Number of "Good" Permutations on the SCIT-4 Multiprocessor Computer Complex, Cybernetics and Systems Analysis, January 2016, Volume 52, Issue 1, pp 52-57.
- B. D. McKay, J. C. McLeod and I. M. Wanless, The number of transversals in a Latin square, Des. Codes Cryptogr., 40, (2006) 269-284.
- D. Novakovic, Computation of the number of complete mappings for permutations, Cybernetics & System Analysis, No. 2, v. 36 (2000), pp. 244-247.
- Kevin Pratt, Closed-Form Expressions for the n-Queens Problem and Related Problems, arXiv:1609.09585 [cs.DM], 2016.
- D. S. Stones and I. M. Wanless, Compound orthomorphisms of the cyclic group, Finite Fields Appl. 16 (2010), 277-289.
- Eric Weisstein's World of Mathematics, Queens Problem.
-
k = 6; A = zeros(1,k); for i = 1:k; n = 2*i-1; x = [0: n-1]; allP = perms(x); T = size(allP,1); X = repmat(x, T, 1); Y = mod(X + allP, n); Y = sort(Y, 2); L = ~(sum(Y ~= X, 2)); A(i) = sum(L); end; A
% 1st 6 terms by testing all n! possible distance vectors
% Ross Drewe, Sep 03 2017
More terms from Jieh Hsiang, D. Frank Hsu and Yuh Pyng Shieh (arping(AT)turing.csie.ntu.edu.tw), May 08 2002
A003110
a(n) = number of special odd permutations of 2*n+1.
Original entry on oeis.org
0, 2, 2, 108, 2028, 32870, 1213110, 46493784, 2310521000, 137466038346, 9842687925450, 832295357128500
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A003109
a(n) = number of special even permutations of 2*n+1.
Original entry on oeis.org
1, 1, 17, 117, 1413, 46389, 1211085, 47977305, 2302999889, 137682614769, 9844042388505, 832087399629125
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A071608
Number of complete mappings f(x) of Z_{2n+1} such that -(-id+f)^(-1)=f.
Original entry on oeis.org
1, 1, 0, 4, 0, 0, 80, 48, 0, 3328, 1920, 0, 270080, 131328, 0, 3257736, 16379904, 0, 5750476800, 2942582784, 0, 1376249266176, 706948005888, 0, 430415593603072
Offset: 0
J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
f(x)=3x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=2x) is also a permutation of Z_7. And -(-id+f)^(-1)(x)=f(x).
- Y. P. Shieh, "Partition strategies for #P-complete problems with applications to enumerative combinatorics", PhD thesis, National Taiwan University, 2001.
- Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
A343868
Number of semicyclic Latin squares of order n with the first row in ascending order.
Original entry on oeis.org
0, 0, 0, 8, 40, 338, 1512, 11368, 84960, 828972, 7291900, 85823668, 958954152, 12930529446, 176651211776, 2631044069296, 41847091313152
Offset: 1
The permutation 164253 can be shown in a 6 X 6 grid:
X . . . . .
. . . . . X
. . . X . .
. X . . . .
. . . . X .
. . X . . .
This permutation gives the following 4 semicyclic squares.
1 2 3 4 5 6 1 4 2 5 3 6 1 4 3 6 2 5 1 4 5 2 3 6
2 3 4 5 6 1 2 5 3 6 4 1 3 6 2 5 4 1 2 5 6 3 4 1
4 5 6 1 2 3 3 6 4 1 5 2 5 2 4 1 3 6 6 3 4 1 2 5
6 1 2 3 4 5 4 1 5 2 6 3 4 1 6 3 5 2 4 1 2 5 6 3
3 4 5 6 1 2 5 2 6 3 1 4 6 3 5 2 1 4 5 2 3 6 1 4
5 6 1 2 3 4 6 3 1 4 2 5 2 5 1 4 6 3 3 6 1 4 5 2
In the third example, moving one cell down and two across increases the cell value by 1 (cyclically) and in the fourth example the displacement is 3 rows down and 2 across. Symbols can then be rearranged to give 4 distinct semicyclic squares with the first row in ascending order.
A006204
Number of starters in cyclic group of order 2n+1.
Original entry on oeis.org
1, 1, 3, 9, 25, 133, 631, 3857, 25905, 188181, 1515283, 13376125, 128102625, 1317606101, 14534145947, 170922533545, 2138089212789
Offset: 1
f(x)=6x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=5x) is also a permutation of Z_7. f^(-1)(x)=6x=f(x). So f(x) is fixed under reflection.
- CRC Handbook of Combinatorial Designs, 1996, p. 469.
- CRC Handbook of Combinatorial Designs, 2nd edition, 2007, p. 624.
- J. D. Horton, Orthogonal starters in finite Abelian groups, Discrete Math., 79 (1989/1990), 265-278.
- V. Linja-aho and Patric R. J. Östergård, Classification of starters, J. Combin. Math. Combin. Comput. 75 (2010), 153-159.
- Y. P. Shieh, "Partition strategies for #P-complete problems with applications to enumerative combinatorics", PhD thesis, National Taiwan University, 2001.
- Y. P. Shieh, J. Hsiang and D. F. Hsu, "On the enumeration of Abelian k-complete mappings", vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Bill Butler, Durango Bill's Bridge Probabilities and Combinatorics
- Jieh Hsiang, Yuhpyng Shieh, Yaochiang Chen, Cyclic complete mappings counting problems, National Taiwan University, Taipei, April 2003.
- Vesa Linja-aho, Patric R. J. Östergård, Classification of starters, J. Combin. Math. Combin. Comput. 75 (2010), 153-159.
Additional comments and one more term from J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
Extended by Vesa Linja-aho (vesa.linja-aho(AT)tkk.fi), May 06 2009
A006609
Number of cyclic neofields of order n.
Original entry on oeis.org
1, 2, 3, 8, 19, 64, 225, 928, 3441, 17536, 79259, 454016, 2424195, 15628288, 94471089, 679156224, 4613520889, 36563599360, 275148653115
Offset: 4
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A190141
The number of conjugacy classes of the symmetric group S_{0..n-1}, containing at least one complete bijection.
Original entry on oeis.org
2, 4, 5, 8, 10, 18, 22, 34, 41, 63, 77, 111, 135, 190, 231
Offset: 3
n = 6, a(6) = 5. We have:
e((1->3->5->2->4)) = (1->3->4->5), ec((0->3->1->4->2)) = (1->4)(2->3),
ec((1->2->4->5)) = (1->2->5), ec((1->3)) = (1->3) and ec((0->2))= identity.
The remaining conjugacy classes don't contain a complete bijection.
Showing 1-8 of 8 results.
Comments