cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003111 Number of complete mappings of the cyclic group Z_{2n+1}.

Original entry on oeis.org

1, 1, 3, 19, 225, 3441, 79259, 2424195, 94471089, 4613520889, 275148653115, 19686730313955, 1664382756757625
Offset: 0

Views

Author

Keywords

Comments

A complete mapping of a cyclic group (Z_n,+) is a permutation f(x) of Z_n such that f(0)=0 and such that f(x)-x is also a permutation.
a(n)=TSQ(n)/n where TSQ(n) is the number of solutions of the toroidal semi-n-queen problem (A006717 is the sequence TSQ(2k-1)).
Stated another way, this is the number of "good" permutations on 2n+1 elements (see A006717) that start with 0. [Novakovich]. - N. J. A. Sloane, Feb 22 2011

Examples

			f(x)=2x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=x) is also a permutation of Z_7.
		

References

  • Anthony B. Evans, Orthomorphism Graphs of Groups, vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991.
  • Y. P. Shieh, Partition strategies for #P-complete problems with applications to enumerative combinatorics, PhD thesis, National Taiwan University, 2001.
  • Y. P. Shieh, J. Hsiang and D. F. Hsu, On the enumeration of Abelian k-complete mappings, Vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Suppose n is odd and let b(n)=a((n-1)/2). Then b(n) is odd; if n>3 and n is not 1 mod 3 then b(n) is divisible by 3; b(n)=-2 mod n in n is prime; b(n) is divisible by n if n is composite; b(n) is asymptotically in between 3.2^n and 0.62^n n!. [Cavenagh, Wanless], [McKay, McLeod, Wanless], [Stones, Wanless]. - Ian Wanless, Jul 30 2010
a(n) = A003109(n) + A003110(n). - Sean A. Irvine, Jan 30 2015
a(n) = A006609(2*n+2), n>0. - Sean A. Irvine, Jan 30 2015
From Vaclav Kotesovec, Jul 22 2023: (Start)
a(n) ~ exp(-1/2) * (2*n)!^2 / (2*n + 1)^(2*n - 1). [Eberhard, Manners, Mrazovic, 2016, Theorem 1.3, n->2*n+1]
a(n) ~ Pi * 2^(2*n + 3) * n^(2*n + 2) / exp(4*n + 3/2). (End)

Extensions

More terms from J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
a(12) from Yuh-Pyng Shieh (arping(AT)gmail.com), Jan 10 2006

A003112 Permanent of Schur's matrix of order 2n+1.

Original entry on oeis.org

1, -3, -5, -105, 81, 6765, 175747, 30375, 25219857, 142901109, 4548104883, -31152650265, -5198937484375, 65230244418933, -1300425712598285, 126691467546591, 868088125376401545, -15139017417029296875
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 121.

Crossrefs

Programs

  • Mathematica
    GrayInsert[n_] := Block[{q = n, j = 1}, While[ EvenQ[q], q /= 2; j++]; {j, (-1)^((q - 1)/2)}];abs2[x_] := Re[x]^2 + Im[x]^2;Schur[n_, prec_] :=  Block[{xi = N[E^(2 Pi* I/n), prec], m, i, j, rowsum, sum = 0}, m = Table[xi^Mod[i j, n], {i, n - 2}, {j, (n - 1)/2}]; rowsum = Table[xi^(-j) + N[1/2, prec], {j, (n - 1)/2}]; sum = abs2[Times @@ rowsum]; Do[gi = GrayInsert[i]; rowsum += gi[[2]]* m[[gi[[1]]]]; sum += N[(-1)^i* abs2[Times @@ rowsum], prec], {i, 2^(n - 2) - 1}]; -Round[n *2* sum]] /; OddQ[n]; Do[ Print[{n, Schur[n, n+1]}], {n, 1, 16}] (* copied the necessary Mathematica coding from Prof. Ilan Vardi, Robert G. Wilson v, Apr 19 2020 *)
  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    for(k=1,12,n=2*k-1;z=exp(2*Pi*I/n);a=matrix(n,n,i,j,z^((i-1)*(j-1)));print1(round(real(permRWNb(a)))",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 17 2007
    
  • PARI
    for(k=1, 12, a=matrix(2*k-1, 2*k-1, i, j, exp(2*Pi*I*(i-1)*(j-1)/(2*k-1))); print1(round(real(matpermanent(a)))", ")) \\ Vaclav Kotesovec, Aug 12 2021

Formula

a(n) = (-1)^n * (2*n+1) * (A003109(n) - A003110(n)). - Sean A. Irvine, Jan 31 2015

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 17 2007
a(15)-a(16) from Vaclav Kotesovec, Dec 11 2013
a(17) from Vaclav Kotesovec, Aug 19 2021

A003110 a(n) = number of special odd permutations of 2*n+1.

Original entry on oeis.org

0, 2, 2, 108, 2028, 32870, 1213110, 46493784, 2310521000, 137466038346, 9842687925450, 832295357128500
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of odd permutations, pi(0),...,pi(2*n), of 0,...,2*n such that pi(0) = 0 and p(k) = k + pi(k) (mod 2*n+1), k=0,...,2*n is also a permutation of 0,...,2*n. - Sean A. Irvine, Jan 31 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003109 (special even permutations), A003110 (total).

Extensions

Name clarified and offset corrected by Sean A. Irvine, Jan 31 2015
a(8)-a(9) from Sean A. Irvine, Jan 31 2015
a(10)-a(12) from Vaclav Kotesovec, May 17 2019 (using the terms of A003111 and A003112)
Showing 1-3 of 3 results.