cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003111 Number of complete mappings of the cyclic group Z_{2n+1}.

Original entry on oeis.org

1, 1, 3, 19, 225, 3441, 79259, 2424195, 94471089, 4613520889, 275148653115, 19686730313955, 1664382756757625
Offset: 0

Views

Author

Keywords

Comments

A complete mapping of a cyclic group (Z_n,+) is a permutation f(x) of Z_n such that f(0)=0 and such that f(x)-x is also a permutation.
a(n)=TSQ(n)/n where TSQ(n) is the number of solutions of the toroidal semi-n-queen problem (A006717 is the sequence TSQ(2k-1)).
Stated another way, this is the number of "good" permutations on 2n+1 elements (see A006717) that start with 0. [Novakovich]. - N. J. A. Sloane, Feb 22 2011

Examples

			f(x)=2x in (Z_7,+) is a complete mapping of Z_7 since f(0)=0 and f(x)-x (=x) is also a permutation of Z_7.
		

References

  • Anthony B. Evans, Orthomorphism Graphs of Groups, vol. 1535 of Lecture Notes in Mathematics, Springer-Verlag, 1991.
  • Y. P. Shieh, Partition strategies for #P-complete problems with applications to enumerative combinatorics, PhD thesis, National Taiwan University, 2001.
  • Y. P. Shieh, J. Hsiang and D. F. Hsu, On the enumeration of Abelian k-complete mappings, Vol. 144 of Congressus Numerantium, 2000, pp. 67-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Suppose n is odd and let b(n)=a((n-1)/2). Then b(n) is odd; if n>3 and n is not 1 mod 3 then b(n) is divisible by 3; b(n)=-2 mod n in n is prime; b(n) is divisible by n if n is composite; b(n) is asymptotically in between 3.2^n and 0.62^n n!. [Cavenagh, Wanless], [McKay, McLeod, Wanless], [Stones, Wanless]. - Ian Wanless, Jul 30 2010
a(n) = A003109(n) + A003110(n). - Sean A. Irvine, Jan 30 2015
a(n) = A006609(2*n+2), n>0. - Sean A. Irvine, Jan 30 2015
From Vaclav Kotesovec, Jul 22 2023: (Start)
a(n) ~ exp(-1/2) * (2*n)!^2 / (2*n + 1)^(2*n - 1). [Eberhard, Manners, Mrazovic, 2016, Theorem 1.3, n->2*n+1]
a(n) ~ Pi * 2^(2*n + 3) * n^(2*n + 2) / exp(4*n + 3/2). (End)

Extensions

More terms from J. Hsiang, D. F. Hsu and Y. P. Shieh (arping(AT)turing.csie.ntu.edu.tw), Jun 03 2002
a(12) from Yuh-Pyng Shieh (arping(AT)gmail.com), Jan 10 2006

A003112 Permanent of Schur's matrix of order 2n+1.

Original entry on oeis.org

1, -3, -5, -105, 81, 6765, 175747, 30375, 25219857, 142901109, 4548104883, -31152650265, -5198937484375, 65230244418933, -1300425712598285, 126691467546591, 868088125376401545, -15139017417029296875
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 121.

Crossrefs

Programs

  • Mathematica
    GrayInsert[n_] := Block[{q = n, j = 1}, While[ EvenQ[q], q /= 2; j++]; {j, (-1)^((q - 1)/2)}];abs2[x_] := Re[x]^2 + Im[x]^2;Schur[n_, prec_] :=  Block[{xi = N[E^(2 Pi* I/n), prec], m, i, j, rowsum, sum = 0}, m = Table[xi^Mod[i j, n], {i, n - 2}, {j, (n - 1)/2}]; rowsum = Table[xi^(-j) + N[1/2, prec], {j, (n - 1)/2}]; sum = abs2[Times @@ rowsum]; Do[gi = GrayInsert[i]; rowsum += gi[[2]]* m[[gi[[1]]]]; sum += N[(-1)^i* abs2[Times @@ rowsum], prec], {i, 2^(n - 2) - 1}]; -Round[n *2* sum]] /; OddQ[n]; Do[ Print[{n, Schur[n, n+1]}], {n, 1, 16}] (* copied the necessary Mathematica coding from Prof. Ilan Vardi, Robert G. Wilson v, Apr 19 2020 *)
  • PARI
    permRWNb(a)=n=matsize(a)[1];if(n==1,return(a[1,1]));sg=1;in=vectorv(n);x=in;x=a[,n]-sum(j=1,n,a[,j])/2;p=prod(i=1,n,x[i]);for(k=1,2^(n-1)-1,sg=-sg;j=valuation(k,2)+1;z=1-2*in[j];in[j]+=z;x+=z*a[,j];p+=prod(i=1,n,x[i],sg));return(2*(2*(n%2)-1)*p)
    for(k=1,12,n=2*k-1;z=exp(2*Pi*I/n);a=matrix(n,n,i,j,z^((i-1)*(j-1)));print1(round(real(permRWNb(a)))",")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), May 17 2007
    
  • PARI
    for(k=1, 12, a=matrix(2*k-1, 2*k-1, i, j, exp(2*Pi*I*(i-1)*(j-1)/(2*k-1))); print1(round(real(matpermanent(a)))", ")) \\ Vaclav Kotesovec, Aug 12 2021

Formula

a(n) = (-1)^n * (2*n+1) * (A003109(n) - A003110(n)). - Sean A. Irvine, Jan 31 2015

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 17 2007
a(15)-a(16) from Vaclav Kotesovec, Dec 11 2013
a(17) from Vaclav Kotesovec, Aug 19 2021

A003109 a(n) = number of special even permutations of 2*n+1.

Original entry on oeis.org

1, 1, 17, 117, 1413, 46389, 1211085, 47977305, 2302999889, 137682614769, 9844042388505, 832087399629125
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of even permutations, pi(0),...,pi(2*n), of 0,...,2*n such that pi(0) = 0 and p(k) = k + pi(k) (mod 2*n+1), k=0,...,2*n is also a permutation of 0,...,2*n. - Sean A. Irvine, Jan 30 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003110 (special odd permutations), A003111 (total).

Extensions

a(8)-a(9) from Sean A. Irvine, Jan 31 2015
a(10)-a(12) from Vaclav Kotesovec, May 17 2019 (using the terms of A003111 and A003112)
Showing 1-3 of 3 results.