A327761 The number of 3-interval parking functions of size n.
0, 0, 1, 8, 61, 604, 7145, 96514
Offset: 1
Links
- Sam Spiro, Subset Parking Functions, arXiv:1909.10109 [math.CO], 2019.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Sam Spiro has authored 4 sequences.
The permutations counted by a(7) include 1237654 and 17265243.
t[n_, k_] := Sum[(-1)^j (k - j)^n Binomial[n + 1, j], {j, 0, k}]; a[n_] := If[n<7, 0, 4 t[n-1, 4] - (Binomial[n, 3] - Binomial[n, 2] + 4) * 2^(n-2) - 22 Binomial[n, 5] + 16 Binomial[n, 4] - 4 Binomial[n, 3] + 2n]; Array[a, 30] (* Jean-François Alcover, Feb 29 2020, from Sam Spiro's 1st formula *)
concat([0,0,0,0,0,0], Vec(2*x^7*(302 - 3600*x + 18341*x^2 - 52006*x^3 + 89327*x^4 - 94728*x^5 + 61016*x^6 - 23368*x^7 + 5424*x^8 - 576*x^9) / ((1 - x)^6*(1 - 2*x)^4*(1 - 3*x)^2*(1 - 4*x)) + O(x^30))) \\ Colin Barker, Mar 07 2019
Some permutations counted by a(5) include 14253 and 34521.
a[1] = 0; a[n_] := 2n^2 - 2n - 1 - n 2^(n-1) - 2 Binomial[n, 3] + Sum[ Binomial[n, k] (2^k - 2k), {k, 0, n}]; Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Nov 11 2018 *)
a(n)={if(n<2, 0, 2*n^2 - 2*n - 1 - n*2^(n-1) - 2*binomial(n,3) + sum(k=0, n, binomial(n, k)*(2^k - 2*k)))} \\ Andrew Howroyd, Nov 01 2018
concat([0,0,0,0], Vec(2*x^5*(11 - 35*x + 32*x^2 - 6*x^3) / ((1 - x)^4*(1 - 2*x)^2*(1 - 3*x)) + O(x^40))) \\ Colin Barker, Mar 07 2019
Comments