A342998 Minimum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.
1, 0, 5, 27, 0, 4523, 128818, 0, 204330233, 11232045257
Offset: 0
Examples
For n=2 one of best cyclic diagonal Latin squares of order 5 0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2 has a(2)=5 diagonal transversals: 0 . . . . . 1 . . . . . 2 . . . . . 3 . . . . . 4 . . 4 . . . . . 0 . . . . . 1 2 . . . . . 3 . . . . . . . 3 4 . . . . . 0 . . . . . 1 . . . . . 2 . . 2 . . . . . 3 . . . . . 4 . . . . . 0 1 . . . . . . . 1 . . . . . 2 3 . . . . . 4 . . . . . 0 . .
Links
- Eduard I. Vatutin, Enumerating the diagonal transversals for cyclic diagonal Latin squares of orders 1-19 (in Russian).
- Eduard I. Vatutin, Proving list (best known examples).
- Index entries for sequences related to Latin squares and rectangles.
Comments