A339757
a(n) is the number of Zuckerman numbers k for which k/A007954(k) = n, where A007954(k) is the product of the decimal digits of k.
Original entry on oeis.org
9, 1, 2, 1, 1, 1, 1, 2, 3, 0, 1, 2, 3, 1, 0, 0, 1, 3, 2, 0, 1, 2, 3, 0, 0, 0, 1, 2, 2, 0
Offset: 1
The integers k=1 to 9 are the Zuckerman numbers that satisfy k/A007954(k)=1, so a(1)=9.
A343050
Zuckerman numbers (A007602) ordered by increasing value of k/A007954(k) where A007954(k) is the product of the decimal digits of k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 36, 15, 24, 384, 175, 12, 735, 128, 672, 135, 144, 1575, 11, 1296, 139968, 624, 3276, 1886976, 224, 816, 216, 432, 34992, 1197, 12768, 315, 132, 3168, 115, 6624, 8832, 2916, 1176, 1344, 3915, 739935
Offset: 1
As a table, sequence begins:
1 [1, 2, 3, 4, 5, 6, 7, 8, 9]
2 [36]
3 [15, 24]
4 [384]
5 [175]
6 [12]
7 [735]
8 [128, 672]
9 [135, 144, 1575]
10 []
11 [11]
12 [1296, 139968]
13 [624, 3276, 1886976]
14 [224]
15 []
16 []
17 [816]
18 [216, 432, 34992]
19 [1197, 12768]
20 []
21 [315]
22 [132, 3168]
23 [115, 6624, 8832]
24 []
25 []
26 []
27 [2916]
28 [1176, 1344]
29 [3915, 739935]
30 []
... where the 1st column is A056770 and the number of terms per rows is A339757.
Showing 1-2 of 2 results.
Comments