cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343139 Numbers k that satisfy the condition digitsum(k) = digitsum(pi(k)) where pi is the prime counting function.

Original entry on oeis.org

15, 27, 51, 63, 120, 130, 131, 142, 153, 164, 208, 218, 230, 242, 252, 262, 263, 274, 305, 318, 327, 338, 348, 360, 370, 381, 392, 413, 424, 435, 446, 456, 457, 702, 712, 722, 732, 805, 860, 901, 912, 922, 932, 1016, 1027, 1038, 1039, 1048, 1049, 1059, 1071, 1080
Offset: 1

Views

Author

K. D. Bajpai, Apr 06 2021

Keywords

Comments

a(7) = 131 is the first prime in this sequence.
A033548 (Honaker primes) is a subsequence of this sequence.

Examples

			153 is a term because the number of primes up to 153 is 36 and 1 + 5 + 3 = 9 = 3 + 6.
435 is a term because number of primes up to 435 is 84 and 4 + 3 + 5 = 12 = 8 + 4.
		

Crossrefs

Programs

  • Mathematica
    fHQ[n_] := Plus @@ IntegerDigits@n == Plus @@ IntegerDigits@PrimePi@n; Select[Range[3000], fHQ[#] &]
  • PARI
    for(n=1, 5000, if(sumdigits(n)==vecsum(digits(primepi(n))), print1(n, ", " )));
    
  • PARI
    upto(n) = { my(q = 2, ulim = nextprime(n), pi = 0, res = List()); forprime(p = 3, ulim, pi++; for(i = q, p-1, if(sumdigits(i) == sumdigits(pi), listput(res, i) ) ); q = p ); res } \\ David A. Corneth, May 26 2021
    
  • Python
    from sympy import primepi
    def sd(n): return sum(map(int, str(n)))
    def ok(n): return sd(n) == sd(primepi(n))
    print(list(filter(ok, range(1, 1081)))) # Michael S. Branicky, May 28 2021