A343139 Numbers k that satisfy the condition digitsum(k) = digitsum(pi(k)) where pi is the prime counting function.
15, 27, 51, 63, 120, 130, 131, 142, 153, 164, 208, 218, 230, 242, 252, 262, 263, 274, 305, 318, 327, 338, 348, 360, 370, 381, 392, 413, 424, 435, 446, 456, 457, 702, 712, 722, 732, 805, 860, 901, 912, 922, 932, 1016, 1027, 1038, 1039, 1048, 1049, 1059, 1071, 1080
Offset: 1
Examples
153 is a term because the number of primes up to 153 is 36 and 1 + 5 + 3 = 9 = 3 + 6. 435 is a term because number of primes up to 435 is 84 and 4 + 3 + 5 = 12 = 8 + 4.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
fHQ[n_] := Plus @@ IntegerDigits@n == Plus @@ IntegerDigits@PrimePi@n; Select[Range[3000], fHQ[#] &]
-
PARI
for(n=1, 5000, if(sumdigits(n)==vecsum(digits(primepi(n))), print1(n, ", " )));
-
PARI
upto(n) = { my(q = 2, ulim = nextprime(n), pi = 0, res = List()); forprime(p = 3, ulim, pi++; for(i = q, p-1, if(sumdigits(i) == sumdigits(pi), listput(res, i) ) ); q = p ); res } \\ David A. Corneth, May 26 2021
-
Python
from sympy import primepi def sd(n): return sum(map(int, str(n))) def ok(n): return sd(n) == sd(primepi(n)) print(list(filter(ok, range(1, 1081)))) # Michael S. Branicky, May 28 2021
Comments