A343144 a(n) is the smallest number m with n divisors such that m + 1 has n + 1 divisors; or 0 if no such number exists.
1, 3, 9, 15, 0, 63, 729, 195, 96393124, 0, 59049, 0, 0, 0, 58564, 65535, 0, 0, 0, 18224, 339086603837890624, 0, 302862043149743582494593171234930481, 456975, 4785795436938284970984441531228412302268149380473357781656407371343376, 0, 8990453124, 0, 0, 0
Offset: 1
Keywords
Examples
a(4) = 15 because 15 is the smallest number m such that tau(m) = tau(15) = 4 and tau(16) = tau(m) + 1 = 5.
Links
- J. H. E. Cohn, The Diophantine equation x^4 + 1 = Dy^2, Mathematics of Computation, Vol. 66, No. 219 (1997), pp. 1347-1351.
Programs
-
Magma
Ax:=func
; [Ax(n): n in [1..4]];
Formula
a(n) = |A341654(n,n-1)|.
Extensions
a(10), a(12) from David A. Corneth, Apr 09 2021
a(13)-a(14) from Jinyuan Wang, Apr 18 2021
a(17)-a(19) from Jon E. Schoenfield, Apr 19 2021
a(21)-a(22), a(25)-a(26), a(28)-a(30) from Jinyuan Wang, Apr 23 2021
Comments