cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A020775 Decimal expansion of 1/sqrt(18).

Original entry on oeis.org

2, 3, 5, 7, 0, 2, 2, 6, 0, 3, 9, 5, 5, 1, 5, 8, 4, 1, 4, 6, 6, 9, 4, 8, 1, 2, 0, 7, 0, 1, 6, 1, 6, 3, 4, 6, 4, 2, 8, 2, 7, 8, 6, 4, 5, 8, 9, 6, 1, 5, 8, 0, 1, 2, 1, 9, 6, 1, 1, 3, 2, 8, 9, 6, 6, 5, 1, 2, 2, 0, 7, 9, 7, 4, 3, 6, 8, 4, 5, 0, 6, 4, 7, 5, 0, 6, 4, 5, 8, 9, 0, 5, 4, 6, 0, 6, 9, 2, 8
Offset: 0

Views

Author

Keywords

Comments

With offset 1, this is the decimal expansion of the volume of a cuboctahedron with edge length 1, which equals 5*sqrt(2)/3 = 2.357... . - Wesley Ivan Hurt, May 07 2021
Volume of a square pyramid and triangular bipyramid (Johnson solids J_1 and J_12, respectively) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			0.2357022603955158414669481207016163464282786458961580121961132896... - _Vladimir Joseph Stephan Orlovsky_, May 30 2010
		

Crossrefs

Cf. A343199 (cuboctahedron surface area).

Programs

A377343 Decimal expansion of the surface area of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.

Original entry on oeis.org

6, 1, 7, 5, 5, 1, 7, 2, 4, 3, 9, 3, 0, 3, 6, 6, 8, 1, 0, 7, 9, 4, 9, 6, 2, 0, 7, 8, 8, 5, 8, 6, 8, 4, 5, 3, 4, 6, 1, 4, 9, 7, 2, 5, 5, 5, 0, 2, 4, 7, 9, 4, 4, 4, 1, 4, 7, 8, 9, 8, 4, 0, 6, 0, 9, 3, 1, 1, 9, 8, 5, 9, 4, 4, 4, 5, 0, 8, 8, 4, 9, 1, 1, 1, 7, 8, 4, 0, 4, 6
Offset: 2

Views

Author

Paolo Xausa, Oct 26 2024

Keywords

Examples

			61.7551724393036681079496207885868453461497255502...
		

Crossrefs

Cf. A377344 (volume), A377345 (circumradius), A377346 (midradius).
Cf. A343199 (analogous for a cuboctahedron).
Cf. A135611.

Programs

  • Mathematica
    First[RealDigits[12*(2 + Sqrt[2] + Sqrt[3]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCuboctahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 12*(2 + sqrt(2) + sqrt(3)) = 12*(2 + A135611).

A381685 Decimal expansion of the isoperimetric quotient of a cuboctahedron.

Original entry on oeis.org

7, 4, 1, 2, 1, 0, 7, 0, 7, 4, 9, 6, 4, 3, 8, 4, 6, 3, 3, 6, 9, 8, 7, 2, 6, 2, 8, 3, 9, 1, 1, 0, 4, 1, 4, 8, 2, 7, 3, 2, 8, 5, 3, 2, 8, 4, 6, 1, 6, 9, 7, 0, 5, 2, 2, 4, 0, 4, 3, 5, 6, 2, 4, 9, 6, 4, 2, 3, 6, 0, 6, 9, 2, 2, 2, 6, 1, 9, 9, 5, 3, 0, 4, 8, 9, 1, 5, 6, 9, 7
Offset: 0

Views

Author

Paolo Xausa, Mar 04 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.74121070749643846336987262839110414827328532846...
		

Crossrefs

Cf. A020775 (volume, with offset 1), A343199 (surface area).

Programs

  • Mathematica
    First[RealDigits[25*Pi/(3 + Sqrt[3])^3, 10, 100]]

Formula

Equals 3600*Pi*A020775^2/(A343199^3).
Equals 25*Pi/((3 + sqrt(3))^3) = 25*A000796/((3 + A002194)^3).
Showing 1-3 of 3 results.