cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A020829 Decimal expansion of 1/sqrt(72) = 1/(3*2^(3/2)) = sqrt(2)/12.

Original entry on oeis.org

1, 1, 7, 8, 5, 1, 1, 3, 0, 1, 9, 7, 7, 5, 7, 9, 2, 0, 7, 3, 3, 4, 7, 4, 0, 6, 0, 3, 5, 0, 8, 0, 8, 1, 7, 3, 2, 1, 4, 1, 3, 9, 3, 2, 2, 9, 4, 8, 0, 7, 9, 0, 0, 6, 0, 9, 8, 0, 5, 6, 6, 4, 4, 8, 3, 2, 5, 6, 1, 0, 3, 9, 8, 7, 1, 8, 4, 2, 2, 5, 3, 2, 3, 7, 5, 3, 2, 2, 9, 4, 5, 2, 7, 3, 0, 3, 4, 6, 4
Offset: 0

Views

Author

Keywords

Comments

Volume of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
In the dragon curve fractal, (5/6)*sqrt(2) = 1.1785.... is the maximum distance of any point from curve start. Such a maximum must be to a vertex of the convex hull. Hull vertices are shown by Benedek and Panzone (theorem 3, page 85) and their P8 = 7/6 - (1/6)i at distance sqrt((7/6)^2 + (1/6)^2) is the maximum. - Kevin Ryde, Nov 22 2019
With offset 1, volume of a triangular cupola (Johnson solid J_3) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			0.117851130197757920733474...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A131594 (regular octahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).

Programs

Formula

Equals Integral_{x=0..Pi/4} sin(x)^2 * cos(x) dx. - Amiram Eldar, May 31 2021
Equals 1/A010524 = A020765/3 = A020775/2 = A378207/5. - Hugo Pfoertner, Jan 26 2025

A274540 Decimal expansion of exp(sqrt(2)).

Original entry on oeis.org

4, 1, 1, 3, 2, 5, 0, 3, 7, 8, 7, 8, 2, 9, 2, 7, 5, 1, 7, 1, 7, 3, 5, 8, 1, 8, 1, 5, 1, 4, 0, 3, 0, 4, 5, 0, 2, 4, 0, 1, 6, 6, 3, 9, 4, 3, 1, 5, 1, 1, 0, 9, 6, 1, 0, 0, 6, 8, 3, 6, 4, 7, 0, 9, 8, 5, 1, 5, 0, 9, 7, 8, 5, 8, 3, 0, 8, 0, 7, 3, 2, 7, 9, 1, 6, 5, 0
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2016

Keywords

Comments

Define P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(q) = C1 and x(n) = 1 for all other n. We find that C2 = lim_{n -> infinity} P(n) = exp((C1-1)/q).
The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.
Some transform pairs: C1 = A002162 (log(2)) and C2 = A135002 (2/exp(1)); C1 = A016627 (log(4)) and C2 = A135004 (4/exp(1)); C1 = A001113 (exp(1)) and C2 = A234473 (exp(exp(1)-1)).
From Peter Bala, Oct 23 2019: (Start)
The constant is irrational: Henry Cohn gives the following proof in Todd and Vishals Blog - "By the way, here's my favorite application of the tanh continued fraction: exp(sqrt(2)) is irrational.
Consider sqrt(2)*(exp(sqrt(2))-1)/(exp(sqrt(2))+1). If exp(sqrt(2)) were rational, or even in Q(sqrt(2)), then this expression would be in Q(sqrt(2)). However, it is sqrt(2)*tanh(1/sqrt(2)), and the tanh continued fraction shows that this equals [0,1,6,5,14,9,22,13,...]. If it were in Q(sqrt(2)), it would have a periodic simple continued fraction expansion, but it doesn't." (End)

Examples

			c = 4.113250378782927517173581815140304502401663943151...
		

Crossrefs

Programs

  • Maple
    Digits := 80: evalf(exp(sqrt(2))); # End program 1.
    P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=1 then (1 + sqrt(2)) else 1 fi: end: Digits := 49; evalf(P(120)); # End program 2.
  • Mathematica
    First@ RealDigits@ N[Exp[Sqrt@ 2], 80] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    my(x=exp(sqrt(2))); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016

Formula

c = exp(sqrt(2)).
c = lim_{n -> infinity} P(n) with P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(1) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.

Extensions

More terms from Jon E. Schoenfield, Mar 15 2018

A377344 Decimal expansion of the volume of a truncated cuboctahedron (great rhombicuboctahedron) with unit edge length.

Original entry on oeis.org

4, 1, 7, 9, 8, 9, 8, 9, 8, 7, 3, 2, 2, 3, 3, 3, 0, 6, 8, 3, 2, 2, 3, 6, 4, 2, 1, 3, 8, 9, 3, 5, 7, 7, 3, 0, 9, 9, 9, 7, 5, 4, 0, 6, 2, 5, 5, 2, 7, 7, 2, 7, 3, 0, 2, 4, 4, 7, 3, 5, 1, 6, 3, 3, 1, 8, 7, 0, 2, 5, 4, 6, 9, 8, 4, 6, 9, 4, 9, 8, 5, 4, 3, 9, 0, 5, 4, 2, 5, 4
Offset: 2

Views

Author

Paolo Xausa, Oct 26 2024

Keywords

Examples

			41.798989873223330683223642138935773099975406255...
		

Crossrefs

Cf. A377343 (surface area), A377345 (circumradius), A377346 (midradius).
Cf. A020775 (analogous for a cuboctahedron, with offset 1).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[22 + 14*Sqrt[2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCuboctahedron", "Volume"], 10, 100]]

Formula

Equals 22 + 14*sqrt(2) = 22 + 14*A002193.

A343199 Decimal expansion of 6+2*sqrt(3).

Original entry on oeis.org

9, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5, 1, 3, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, May 07 2021

Keywords

Comments

Decimal expansion of the surface area of a cuboctahedron with unit edge length.
Essentially the same sequence of digits as A176394 and A010469. - R. J. Mathar, Jun 10 2021

Examples

			9.4641016151377545870548926830117447338856...
		

Crossrefs

Cf. A020775 (cuboctahedron volume).

Programs

  • Magma
    SetDefaultRealField(RealField(200)); 6+2*Sqrt(3);
  • Mathematica
    RealDigits[N[6 + 2*Sqrt[3], 100]][[1]] (* Wesley Ivan Hurt, Nov 12 2022 *)

A386739 Decimal expansion of the volume of a sphenocorona with unit edges.

Original entry on oeis.org

1, 5, 1, 5, 3, 5, 1, 6, 3, 9, 9, 7, 6, 4, 0, 6, 5, 5, 9, 7, 2, 8, 4, 7, 9, 3, 1, 2, 4, 7, 1, 8, 1, 2, 9, 0, 4, 8, 2, 2, 8, 6, 9, 5, 0, 6, 8, 0, 8, 7, 9, 4, 2, 6, 6, 7, 5, 9, 9, 0, 4, 6, 3, 0, 5, 1, 0, 3, 0, 9, 2, 7, 0, 6, 4, 4, 3, 2, 9, 3, 0, 7, 9, 9, 0, 9, 2, 3, 6, 5
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The sphenocorona is Johnson solid J_86.

Examples

			1.5153516399764065597284793124718129048228695068...
		

Crossrefs

Cf. A010482 (surface area - 2), A178809 (surface area + 4).

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 3*Sqrt[3/2] + Sqrt[13 + Sqrt[54]]]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J86", "Volume"], 10, 100]]

Formula

Equals sqrt(1 + 3*sqrt(3/2) + sqrt(13 + 3*sqrt(6)))/2 = sqrt(1 + 3*A115754 + sqrt(13 + A010507))/2.
Equals A386740 - A020775.
Equals the largest real root of 1024*x^8 - 1024*x^6 - 3008*x^4 - 96*x^2 + 9.

A386740 Decimal expansion of the volume of an augmented sphenocorona with unit edges.

Original entry on oeis.org

1, 7, 5, 1, 0, 5, 3, 9, 0, 0, 3, 7, 1, 9, 2, 2, 4, 0, 1, 1, 9, 5, 4, 2, 7, 4, 3, 3, 1, 7, 3, 4, 2, 9, 2, 5, 1, 2, 5, 1, 1, 4, 8, 1, 5, 2, 7, 0, 4, 9, 5, 2, 2, 7, 8, 9, 5, 6, 0, 1, 7, 9, 2, 0, 1, 7, 5, 4, 3, 1, 3, 5, 0, 3, 8, 8, 0, 1, 3, 8, 1, 4, 4, 6, 5, 9, 8, 8, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2025

Keywords

Comments

The augmented sphenocorona is Johnson solid J_87.

Examples

			1.7510539003719224011954274331734292512511481527...
		

Crossrefs

Cf. A010502 (surface area - 1).

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 3*Sqrt[3/2] + Sqrt[13 + Sqrt[54]]]/2 + 1/Sqrt[18], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J87", "Volume"], 10, 100]]

Formula

Equals sqrt(1 + 3*sqrt(3/2) + sqrt(13 + 3*sqrt(6)))/2 + 1/(3*sqrt(2)) = sqrt(1 + 3*A115754 + sqrt(13 + A010507))/2 + A020775.
Equals A386739 + A020775.
Equals the largest real root of 45137758519296*x^16 - 110336743047168*x^14 - 191069246324736*x^12 + 209269081571328*x^10 + 364547659290624*x^8 - 58793017190400*x^6 + 3306865979520*x^4 - 1275399855936*x^2 + 1439671249.

A381685 Decimal expansion of the isoperimetric quotient of a cuboctahedron.

Original entry on oeis.org

7, 4, 1, 2, 1, 0, 7, 0, 7, 4, 9, 6, 4, 3, 8, 4, 6, 3, 3, 6, 9, 8, 7, 2, 6, 2, 8, 3, 9, 1, 1, 0, 4, 1, 4, 8, 2, 7, 3, 2, 8, 5, 3, 2, 8, 4, 6, 1, 6, 9, 7, 0, 5, 2, 2, 4, 0, 4, 3, 5, 6, 2, 4, 9, 6, 4, 2, 3, 6, 0, 6, 9, 2, 2, 2, 6, 1, 9, 9, 5, 3, 0, 4, 8, 9, 1, 5, 6, 9, 7
Offset: 0

Views

Author

Paolo Xausa, Mar 04 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.74121070749643846336987262839110414827328532846...
		

Crossrefs

Cf. A020775 (volume, with offset 1), A343199 (surface area).

Programs

  • Mathematica
    First[RealDigits[25*Pi/(3 + Sqrt[3])^3, 10, 100]]

Formula

Equals 3600*Pi*A020775^2/(A343199^3).
Equals 25*Pi/((3 + sqrt(3))^3) = 25*A000796/((3 + A002194)^3).

A386435 Decimal expansion of the largest dihedral angle, in radians, in a triangular bipyramid (Johnson solid J_12).

Original entry on oeis.org

2, 4, 6, 1, 9, 1, 8, 8, 3, 4, 6, 8, 1, 5, 4, 9, 3, 6, 4, 2, 6, 9, 8, 5, 8, 3, 5, 6, 4, 9, 5, 9, 7, 4, 7, 5, 1, 4, 2, 0, 6, 8, 0, 0, 1, 8, 7, 1, 0, 1, 8, 9, 6, 7, 8, 1, 1, 1, 0, 9, 6, 6, 6, 7, 3, 2, 7, 9, 8, 4, 6, 2, 8, 9, 5, 6, 5, 1, 2, 1, 7, 5, 7, 0, 6, 5, 0, 3, 2, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 20 2025

Keywords

Comments

Also the largest dihedral angle in a triangular orthobicupola (Johnson solid J_27) and the second largest dihedral angle in an augmented truncated tetrahedron (Johnson solid J_65).

Examples

			2.461918834681549364269858356495974751420680018710...
		

Crossrefs

Cf. A137914 (J_12 smallest dihedral angle).
Cf. A020775 (J_12 volume), A104956 (J_12 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcCos[-7/9], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["J12", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-7/9).
Showing 1-8 of 8 results.