cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A102208 Decimal expansion of the volume of an icosahedron with unit edge length.

Original entry on oeis.org

2, 1, 8, 1, 6, 9, 4, 9, 9, 0, 6, 2, 4, 9, 1, 2, 3, 7, 3, 5, 0, 3, 8, 2, 2, 3, 6, 1, 9, 7, 1, 3, 6, 5, 0, 9, 8, 1, 0, 0, 2, 5, 7, 6, 4, 9, 8, 3, 8, 1, 3, 5, 7, 1, 8, 4, 4, 6, 2, 0, 7, 1, 8, 5, 5, 8, 7, 7, 1, 7, 0, 5, 2, 3, 4, 9, 0, 8, 5, 3, 7, 4, 7, 5, 6, 0, 0, 6, 0, 0, 3, 4, 9, 1, 1, 5, 9, 2, 8, 1
Offset: 1

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Feb 17 2005

Keywords

Examples

			2.181694990624912373503822...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. A001622 (phi), A020829 (regular tetrahedron volume), A131594 (regular octahedron volume), A102769 (regular dodecahedron volume).
Cf. A071402.

Programs

Formula

Equals 5 * (3 + sqrt(5))/12.
Equals 5*phi^2/6, phi being the golden ratio. - Stanislav Sykora, Nov 23 2013

A102769 Decimal expansion of the volume of a dodecahedron with each edge of unit length.

Original entry on oeis.org

7, 6, 6, 3, 1, 1, 8, 9, 6, 0, 6, 2, 4, 6, 3, 1, 9, 6, 8, 7, 1, 6, 0, 5, 3, 9, 2, 0, 2, 7, 9, 7, 3, 3, 4, 1, 2, 0, 2, 1, 0, 8, 2, 1, 2, 9, 3, 2, 0, 1, 7, 0, 0, 1, 7, 4, 7, 4, 0, 7, 0, 1, 7, 9, 4, 6, 8, 4, 1, 1, 6, 1, 9, 8, 6, 6, 1, 5, 8, 5, 7, 3, 9, 7, 5, 2, 2, 5, 2, 1, 4, 6, 6, 2, 8, 6, 8, 9, 8, 1
Offset: 1

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Feb 10 2005

Keywords

Comments

Equals 5*phi^3/(2*xi^2), phi being the golden ratio (A001622) and xi its associate (A182007). - Stanislav Sykora, Nov 23 2013

Examples

			7.663118960624631968716053920...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. A001622 (phi), A182007 (phi associate), A020829 (regular tetrahedron volume), A131594 (regular octahedron volume), A102208 (regular icosahedron volume).

Programs

Formula

Equals (15 + 7 sqrt(5)) / 4.
Equals (sqrt(5)/2)*(phi)^4, where phi is the golden ratio. - G. C. Greubel, Jul 06 2017

A131594 Decimal expansion of sqrt(2)/3, the volume of a regular octahedron with edge length 1.

Original entry on oeis.org

4, 7, 1, 4, 0, 4, 5, 2, 0, 7, 9, 1, 0, 3, 1, 6, 8, 2, 9, 3, 3, 8, 9, 6, 2, 4, 1, 4, 0, 3, 2, 3, 2, 6, 9, 2, 8, 5, 6, 5, 5, 7, 2, 9, 1, 7, 9, 2, 3, 1, 6, 0, 2, 4, 3, 9, 2, 2, 2, 6, 5, 7, 9, 3, 3, 0, 2, 4, 4, 1, 5, 9, 4, 8, 7, 3, 6, 9, 0, 1, 2, 9, 5, 0, 1, 2, 9, 1, 7, 8, 1, 0, 9, 2, 1, 3, 8, 5, 7, 5, 7, 8, 3, 3, 7
Offset: 0

Views

Author

Omar E. Pol, Aug 30 2007

Keywords

Comments

Volume of a regular octahedron: V = ((sqrt(2))/3)* a^3, where 'a' is the edge.

Examples

			0.471404520791031682933896...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A020829 (regular tetrahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).
Cf. A179587.

Programs

Formula

Equals A002193/3 = A010464/A010482. - R. J. Mathar, Dec 11 2009

Extensions

More digits from R. J. Mathar, Dec 11 2009

A232812 Decimal expansion of the surface index of a regular tetrahedron.

Original entry on oeis.org

7, 2, 0, 5, 6, 2, 1, 7, 3, 1, 0, 5, 6, 0, 1, 6, 3, 6, 0, 0, 5, 2, 7, 9, 2, 3, 2, 4, 0, 9, 7, 2, 5, 7, 0, 7, 7, 7, 9, 0, 4, 4, 4, 5, 0, 9, 3, 5, 5, 8, 9, 3, 3, 5, 0, 1, 1, 0, 2, 2, 8, 3, 4, 2, 6, 9, 5, 2, 3, 3, 6, 2, 4, 1, 1, 4, 5, 6, 7, 5, 1, 6, 2, 6, 8, 4, 5, 0, 7, 3, 0, 2, 1, 8, 5, 2, 1, 5, 7, 8, 6, 0, 9, 1, 7
Offset: 1

Views

Author

Stanislav Sykora, Dec 01 2013

Keywords

Comments

Equivalently, the surface area of a regular tetrahedron with unit volume. Among Platonic solids, surface indices decrease with increasing number of faces: this one, 6.0 (cube = hexahedron), A232811 (octahedron), A232810 (dodecahedron), and A232809 (icosahedron).

Examples

			7.20562173105601636005279232409725707779044450935589335...
		

Crossrefs

Cf. A002194, A020829, A232808 (surface index of a sphere), A232809, A232810, A232811.

Programs

Formula

Equals 2*sqrt(3)*3^(2/3).
Equals A002194/A020829^(2/3).

A377275 Decimal expansion of the volume of a truncated tetrahedron with unit edge length.

Original entry on oeis.org

2, 7, 1, 0, 5, 7, 5, 9, 9, 4, 5, 4, 8, 4, 3, 2, 1, 7, 6, 8, 6, 9, 9, 0, 3, 3, 8, 8, 0, 6, 8, 5, 8, 7, 9, 8, 3, 9, 2, 5, 2, 0, 4, 4, 2, 7, 8, 0, 5, 8, 1, 7, 1, 4, 0, 2, 5, 5, 3, 0, 2, 8, 3, 1, 1, 4, 8, 9, 0, 3, 9, 1, 7, 0, 5, 2, 3, 7, 1, 8, 2, 4, 4, 6, 3, 2, 4, 2, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Oct 23 2024

Keywords

Examples

			2.7105759945484321768699033880685879839252044278...
		

Crossrefs

Cf. A377274 (surface area), A377276 (circumradius), A093577 (midradius), A377277 (Dehn invariant).
Cf. A020829 (analogous for a regular tetrahedron).
Cf. A002193.

Programs

  • Mathematica
    First[RealDigits[23/12*Sqrt[2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedTetrahedron", "Volume"], 10, 100]]

Formula

Equals (23/12)*sqrt(2) = (23/12)*A002193.

A380738 Decimal expansion of the largest vertex angle, in radians, in a disdyakis dodecahedron face.

Original entry on oeis.org

1, 5, 2, 1, 9, 6, 1, 3, 8, 1, 9, 5, 5, 7, 8, 1, 6, 6, 3, 1, 6, 0, 7, 7, 7, 2, 7, 1, 8, 8, 3, 3, 8, 4, 3, 8, 2, 1, 0, 0, 6, 1, 8, 3, 3, 0, 6, 2, 7, 9, 6, 9, 0, 5, 0, 1, 5, 0, 7, 2, 0, 9, 5, 4, 1, 5, 5, 8, 0, 6, 3, 1, 4, 3, 1, 9, 1, 0, 9, 3, 0, 8, 1, 9, 7, 8, 8, 4, 2, 5
Offset: 1

Views

Author

Paolo Xausa, Feb 01 2025

Keywords

Comments

A disdyakis dodecahedron face is a scalene triangle with three acute angles.

Examples

			1.5219613819557816631607772718833843821006183306...
		

Crossrefs

Cf. A380736 (face smallest angle), A380737 (face medium angle).

Programs

  • Mathematica
    First[RealDigits[ArcCos[1/6 - Sqrt[2]/12], 10, 100]]

Formula

Equals arccos(1/6 - sqrt(2)/12) = arccos(1/6 - A020829).
Equals Pi - A380736 - A380737.

A363437 Decimal expansion of the volume of the regular tetrahedron inscribed in the unit-radius sphere.

Original entry on oeis.org

5, 1, 3, 2, 0, 0, 2, 3, 9, 2, 7, 9, 6, 6, 7, 3, 4, 6, 2, 3, 0, 3, 5, 4, 4, 7, 1, 5, 5, 7, 2, 9, 5, 5, 1, 6, 1, 3, 1, 2, 0, 1, 5, 5, 6, 6, 8, 4, 5, 5, 7, 2, 2, 3, 1, 2, 7, 6, 4, 6, 5, 1, 2, 4, 3, 0, 2, 0, 2, 3, 7, 5, 3, 8, 0, 3, 8, 5, 1, 9, 6, 1, 7, 2, 1, 9, 1, 4, 6, 2, 7, 4, 2, 8, 8, 8, 4, 6, 6, 8, 6, 6, 8, 5, 2
Offset: 0

Views

Author

Amiram Eldar, Jun 02 2023

Keywords

Examples

			0.51320023927966734623035447155729551613120155668455...
		

Crossrefs

Cf. A118273 (cube), A122553 (regular octahedron), A339259 (regular icosahedron), A363438 (regular dodecahedron).
Other constants related to the regular tetrahedron: A020781, A020829, A137914, A156546, A187110, A210974, A232812, A236555.

Programs

Formula

Equals 8/(9*sqrt(3)).
Equals A118273 / 3.
Equals A020829 / A187110 ^ 3.

A364895 Decimal expansion of the 4-volume of the unit regular pentachoron (5-cell).

Original entry on oeis.org

0, 2, 3, 2, 9, 2, 3, 7, 4, 7, 6, 5, 6, 2, 2, 8, 0, 9, 3, 3, 7, 5, 9, 5, 5, 5, 9, 0, 4, 9, 2, 8, 4, 1, 2, 7, 4, 5, 2, 5, 0, 6, 4, 4, 1, 2, 4, 5, 9, 5, 3, 3, 9, 2, 9, 6, 1, 1, 5, 5, 1, 7, 9, 6, 3, 9, 6, 9, 2, 9, 2, 6, 3, 0, 8, 7, 2, 7, 1, 3, 4, 3, 6, 8, 9, 0, 0, 1, 5, 0, 0, 8, 7, 2, 7, 8, 9, 8, 2, 0
Offset: 0

Views

Author

Jianing Song, Aug 12 2023

Keywords

Comments

Decimal expansion of sqrt(5)/96.
In general, the n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)).

Examples

			Equals 0.02329237476562280933...
		

Crossrefs

Decimal expansion of 4-volumes: this sequence (5-cell), A000007 = 1 (8-cell or tesseract), A020793 = 1/6 (16-cell), A000038 = 2 (24-cell), A364896 (120-cell), A364897 (600-cell).
Decimal expansion of the n-volume of the unit regular n-simplex: A120011 (n=2), A020829 (n=3), this sequence (n=4).

Programs

  • Mathematica
    First[RealDigits[Sqrt[5]/96, 10, 100, -1]] (* Paolo Xausa, Jun 12 2024 *)
  • PARI
    sqrt(5)/96

A386000 Decimal expansion of the volume of a tridiminished icosahedron with unit edge.

Original entry on oeis.org

1, 2, 7, 7, 1, 8, 6, 4, 9, 3, 4, 3, 7, 4, 3, 8, 6, 6, 1, 4, 5, 2, 6, 7, 5, 6, 5, 3, 3, 7, 9, 9, 5, 5, 5, 6, 8, 6, 7, 0, 1, 8, 0, 3, 5, 4, 8, 8, 6, 6, 9, 5, 0, 0, 2, 9, 1, 2, 3, 4, 5, 0, 2, 9, 9, 1, 1, 4, 0, 1, 9, 3, 6, 6, 4, 4, 3, 5, 9, 7, 6, 2, 3, 2, 9, 2, 0, 4, 2, 0
Offset: 1

Views

Author

Paolo Xausa, Jul 14 2025

Keywords

Comments

The tridiminished icosahedron is Johnson solid J_63.

Examples

			1.277186493437438661452675653379955568670180...
		

Crossrefs

Cf. A386001 (surfacea area).

Programs

  • Mathematica
    First[RealDigits[5/8 + 7*Sqrt[5]/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J63", "Volume"], 10, 100]]

Formula

Equals 5/8 + 7*sqrt(5)/24 = 5/8 + 7*A002163/24.
Equals A102208 - 3*A179552 = A386002 - A020829.
Equals the largest root of 144*x^2 - 180*x - 5.

A386002 Decimal expansion of the volume of an augmented tridiminished icosahedron with unit edge.

Original entry on oeis.org

1, 3, 9, 5, 0, 3, 7, 6, 2, 3, 6, 3, 5, 1, 9, 6, 5, 8, 2, 1, 8, 6, 1, 4, 9, 7, 1, 3, 7, 3, 0, 7, 6, 3, 7, 4, 1, 8, 8, 4, 3, 1, 9, 6, 7, 7, 8, 3, 4, 7, 7, 4, 0, 0, 9, 0, 1, 0, 4, 0, 1, 6, 7, 4, 7, 4, 3, 9, 6, 2, 9, 7, 6, 5, 1, 6, 2, 0, 2, 0, 1, 5, 5, 6, 6, 7, 3, 6, 4, 9
Offset: 1

Views

Author

Paolo Xausa, Jul 18 2025

Keywords

Comments

The augmented tridiminished icosahedron is Johnson solid J_64.

Examples

			1.3950376236351965821861497137307637418843196778...
		

Crossrefs

Cf. A386003 (surface area).

Programs

  • Mathematica
    First[RealDigits[(15 + Sqrt[8] + 7*Sqrt[5])/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J64", "Volume"], 10, 100]]

Formula

Equals (15 + 2*sqrt(2) + 7*sqrt(5))/24 = (15 + A010466 + 7*A002163)/24.
Equals the largest root of 2304*x^4 - 5760*x^3 + 3376*x^2 + 280*x - 49.
Showing 1-10 of 16 results. Next