cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A102208 Decimal expansion of the volume of an icosahedron with unit edge length.

Original entry on oeis.org

2, 1, 8, 1, 6, 9, 4, 9, 9, 0, 6, 2, 4, 9, 1, 2, 3, 7, 3, 5, 0, 3, 8, 2, 2, 3, 6, 1, 9, 7, 1, 3, 6, 5, 0, 9, 8, 1, 0, 0, 2, 5, 7, 6, 4, 9, 8, 3, 8, 1, 3, 5, 7, 1, 8, 4, 4, 6, 2, 0, 7, 1, 8, 5, 5, 8, 7, 7, 1, 7, 0, 5, 2, 3, 4, 9, 0, 8, 5, 3, 7, 4, 7, 5, 6, 0, 0, 6, 0, 0, 3, 4, 9, 1, 1, 5, 9, 2, 8, 1
Offset: 1

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Feb 17 2005

Keywords

Examples

			2.181694990624912373503822...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. A001622 (phi), A020829 (regular tetrahedron volume), A131594 (regular octahedron volume), A102769 (regular dodecahedron volume).
Cf. A071402.

Programs

Formula

Equals 5 * (3 + sqrt(5))/12.
Equals 5*phi^2/6, phi being the golden ratio. - Stanislav Sykora, Nov 23 2013

A179587 Decimal expansion of the volume of square cupola with edge length 1.

Original entry on oeis.org

1, 9, 4, 2, 8, 0, 9, 0, 4, 1, 5, 8, 2, 0, 6, 3, 3, 6, 5, 8, 6, 7, 7, 9, 2, 4, 8, 2, 8, 0, 6, 4, 6, 5, 3, 8, 5, 7, 1, 3, 1, 1, 4, 5, 8, 3, 5, 8, 4, 6, 3, 2, 0, 4, 8, 7, 8, 4, 4, 5, 3, 1, 5, 8, 6, 6, 0, 4, 8, 8, 3, 1, 8, 9, 7, 4, 7, 3, 8, 0, 2, 5, 9, 0, 0, 2, 5, 8, 3, 5, 6, 2, 1, 8, 4, 2, 7, 7, 1, 5, 1, 5, 6, 6, 7
Offset: 1

Views

Author

Keywords

Comments

Square cupola: 12 vertices, 20 edges, and 10 faces.
Also, decimal expansion of 1 + Product_{n>0} (1-1/(4*n+2)^2). - Bruno Berselli, Apr 02 2013
Decimal expansion of 1 + (least possible ratio of the side length of one inscribed square to the side length of another inscribed square in the same non-obtuse triangle). - L. Edson Jeffery, Nov 12 2014
2*sqrt(2)/3 is the radius of the base of the maximum-volume right cone inscribed in a unit-radius sphere. - Amiram Eldar, Sep 25 2022

Examples

			1.942809041582063365867792482806465385713114583584632048784453158660...
		

Crossrefs

Cf. A131594 (decimal expansion of sqrt(2)/3).

Programs

  • Mathematica
    RealDigits[N[1+(2*Sqrt[2])/3,200]]
    (* From the second comment: *) RealDigits[N[1 + Product[1 - 1/(4 n + 2)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    sqrt(8)/3+1 \\ Charles R Greathouse IV, Nov 14 2016

Formula

Equals (3 + 2*sqrt(2))/3.
Equals 1 + 2*A131594. - L. Edson Jeffery, Nov 12 2014

A102769 Decimal expansion of the volume of a dodecahedron with each edge of unit length.

Original entry on oeis.org

7, 6, 6, 3, 1, 1, 8, 9, 6, 0, 6, 2, 4, 6, 3, 1, 9, 6, 8, 7, 1, 6, 0, 5, 3, 9, 2, 0, 2, 7, 9, 7, 3, 3, 4, 1, 2, 0, 2, 1, 0, 8, 2, 1, 2, 9, 3, 2, 0, 1, 7, 0, 0, 1, 7, 4, 7, 4, 0, 7, 0, 1, 7, 9, 4, 6, 8, 4, 1, 1, 6, 1, 9, 8, 6, 6, 1, 5, 8, 5, 7, 3, 9, 7, 5, 2, 2, 5, 2, 1, 4, 6, 6, 2, 8, 6, 8, 9, 8, 1
Offset: 1

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Feb 10 2005

Keywords

Comments

Equals 5*phi^3/(2*xi^2), phi being the golden ratio (A001622) and xi its associate (A182007). - Stanislav Sykora, Nov 23 2013

Examples

			7.663118960624631968716053920...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. A001622 (phi), A182007 (phi associate), A020829 (regular tetrahedron volume), A131594 (regular octahedron volume), A102208 (regular icosahedron volume).

Programs

Formula

Equals (15 + 7 sqrt(5)) / 4.
Equals (sqrt(5)/2)*(phi)^4, where phi is the golden ratio. - G. C. Greubel, Jul 06 2017

A020829 Decimal expansion of 1/sqrt(72) = 1/(3*2^(3/2)) = sqrt(2)/12.

Original entry on oeis.org

1, 1, 7, 8, 5, 1, 1, 3, 0, 1, 9, 7, 7, 5, 7, 9, 2, 0, 7, 3, 3, 4, 7, 4, 0, 6, 0, 3, 5, 0, 8, 0, 8, 1, 7, 3, 2, 1, 4, 1, 3, 9, 3, 2, 2, 9, 4, 8, 0, 7, 9, 0, 0, 6, 0, 9, 8, 0, 5, 6, 6, 4, 4, 8, 3, 2, 5, 6, 1, 0, 3, 9, 8, 7, 1, 8, 4, 2, 2, 5, 3, 2, 3, 7, 5, 3, 2, 2, 9, 4, 5, 2, 7, 3, 0, 3, 4, 6, 4
Offset: 0

Views

Author

Keywords

Comments

Volume of regular tetrahedron with unit edge. - Stanislav Sykora, May 31 2012
In the dragon curve fractal, (5/6)*sqrt(2) = 1.1785.... is the maximum distance of any point from curve start. Such a maximum must be to a vertex of the convex hull. Hull vertices are shown by Benedek and Panzone (theorem 3, page 85) and their P8 = 7/6 - (1/6)i at distance sqrt((7/6)^2 + (1/6)^2) is the maximum. - Kevin Ryde, Nov 22 2019
With offset 1, volume of a triangular cupola (Johnson solid J_3) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			0.117851130197757920733474...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. A131594 (regular octahedron volume), A102208 (regular icosahedron volume), A102769 (regular dodecahedron volume).

Programs

Formula

Equals Integral_{x=0..Pi/4} sin(x)^2 * cos(x) dx. - Amiram Eldar, May 31 2021
Equals 1/A010524 = A020765/3 = A020775/2 = A378207/5. - Hugo Pfoertner, Jan 26 2025

A232811 Decimal expansion of the surface index of a regular octahedron.

Original entry on oeis.org

5, 7, 1, 9, 1, 0, 5, 7, 5, 7, 9, 8, 1, 6, 1, 9, 4, 4, 2, 5, 4, 4, 4, 5, 3, 9, 7, 2, 3, 9, 6, 5, 6, 2, 9, 4, 6, 6, 3, 7, 4, 4, 2, 5, 6, 7, 9, 0, 2, 0, 8, 1, 2, 3, 9, 6, 5, 5, 8, 5, 7, 2, 4, 1, 5, 5, 2, 5, 0, 7, 1, 7, 4, 3, 8, 6, 1, 7, 0, 2, 4, 8, 0, 4, 1, 8, 1, 1, 4, 3, 0, 3, 9, 2, 0, 8, 1, 6, 7, 7, 6, 5, 3, 2, 3
Offset: 1

Views

Author

Stanislav Sykora, Dec 01 2013

Keywords

Comments

Equivalently, the surface area of a regular octahedron with unit volume. Among Platonic solids, surface indices decrease with increasing number of faces: A232812 (tetrahedron), 6.0 (cube = hexahedron), this one, A232810 (dodecahedron), and A232809 (icosahedron).
An algebraic integer of degree 6 with minimal polynomial x^6 - 34992. - Charles R Greathouse IV, Apr 25 2016

Examples

			5.7191057579816194425444539723965629466374425679...
		

Crossrefs

Cf. A010469, A131594, A232808 (surface index for a sphere), A232809, A232810, A232812.

Programs

Formula

sqrt(3)*6^(2/3).

A274540 Decimal expansion of exp(sqrt(2)).

Original entry on oeis.org

4, 1, 1, 3, 2, 5, 0, 3, 7, 8, 7, 8, 2, 9, 2, 7, 5, 1, 7, 1, 7, 3, 5, 8, 1, 8, 1, 5, 1, 4, 0, 3, 0, 4, 5, 0, 2, 4, 0, 1, 6, 6, 3, 9, 4, 3, 1, 5, 1, 1, 0, 9, 6, 1, 0, 0, 6, 8, 3, 6, 4, 7, 0, 9, 8, 5, 1, 5, 0, 9, 7, 8, 5, 8, 3, 0, 8, 0, 7, 3, 2, 7, 9, 1, 6, 5, 0
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2016

Keywords

Comments

Define P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(q) = C1 and x(n) = 1 for all other n. We find that C2 = lim_{n -> infinity} P(n) = exp((C1-1)/q).
The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.
Some transform pairs: C1 = A002162 (log(2)) and C2 = A135002 (2/exp(1)); C1 = A016627 (log(4)) and C2 = A135004 (4/exp(1)); C1 = A001113 (exp(1)) and C2 = A234473 (exp(exp(1)-1)).
From Peter Bala, Oct 23 2019: (Start)
The constant is irrational: Henry Cohn gives the following proof in Todd and Vishals Blog - "By the way, here's my favorite application of the tanh continued fraction: exp(sqrt(2)) is irrational.
Consider sqrt(2)*(exp(sqrt(2))-1)/(exp(sqrt(2))+1). If exp(sqrt(2)) were rational, or even in Q(sqrt(2)), then this expression would be in Q(sqrt(2)). However, it is sqrt(2)*tanh(1/sqrt(2)), and the tanh continued fraction shows that this equals [0,1,6,5,14,9,22,13,...]. If it were in Q(sqrt(2)), it would have a periodic simple continued fraction expansion, but it doesn't." (End)

Examples

			c = 4.113250378782927517173581815140304502401663943151...
		

Crossrefs

Programs

  • Maple
    Digits := 80: evalf(exp(sqrt(2))); # End program 1.
    P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=1 then (1 + sqrt(2)) else 1 fi: end: Digits := 49; evalf(P(120)); # End program 2.
  • Mathematica
    First@ RealDigits@ N[Exp[Sqrt@ 2], 80] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    my(x=exp(sqrt(2))); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016

Formula

c = exp(sqrt(2)).
c = lim_{n -> infinity} P(n) with P(n) = (1/n)*Sum_{k=0..n-1} x(n-k)*P(k) for n >= 1, and P(0) = 1, with x(1) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.

Extensions

More terms from Jon E. Schoenfield, Mar 15 2018

A377342 Decimal expansion of the volume of a truncated octahedron with unit edge length.

Original entry on oeis.org

1, 1, 3, 1, 3, 7, 0, 8, 4, 9, 8, 9, 8, 4, 7, 6, 0, 3, 9, 0, 4, 1, 3, 5, 0, 9, 7, 9, 3, 6, 7, 7, 5, 8, 4, 6, 2, 8, 5, 5, 7, 3, 7, 5, 0, 0, 3, 0, 1, 5, 5, 8, 4, 5, 8, 5, 4, 1, 3, 4, 3, 7, 9, 0, 3, 9, 2, 5, 8, 5, 9, 8, 2, 7, 6, 9, 6, 8, 5, 6, 3, 1, 0, 8, 0, 3, 1, 0, 0, 2
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			11.3137084989847603904135097936775846285573750030...
		

Crossrefs

Cf. A377341 (surface area), A020797 (circumradius/10), A152623 (midradius).
Cf. A131594 (analogous for a regular octahedron).

Programs

  • Mathematica
    First[RealDigits[8*Sqrt[2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedOctahedron", "Volume"], 10, 100]]

Formula

Equals 8*sqrt(2) = 8*A002193 = 4*A010466 = 2*A010487.

A343965 Decimal expansion of 4 + 10*sqrt(2)/3.

Original entry on oeis.org

8, 7, 1, 4, 0, 4, 5, 2, 0, 7, 9, 1, 0, 3, 1, 6, 8, 2, 9, 3, 3, 8, 9, 6, 2, 4, 1, 4, 0, 3, 2, 3, 2, 6, 9, 2, 8, 5, 6, 5, 5, 7, 2, 9, 1, 7, 9, 2, 3, 1, 6, 0, 2, 4, 3, 9, 2, 2, 2, 6, 5, 7, 9, 3, 3, 0, 2, 4, 4, 1, 5, 9, 4, 8, 7, 3, 6, 9, 0, 1, 2, 9, 5, 0, 1, 2, 9, 1, 7, 8, 1, 0, 9, 2, 1, 3, 8, 5, 7, 5
Offset: 1

Views

Author

Wesley Ivan Hurt, May 05 2021

Keywords

Comments

Volume of a rhombicuboctahedron with unit edge length.
Apart from the leading digit and offset the same as A131594. - R. J. Mathar, May 07 2021

Examples

			8.7140452079103168293389624140323269285655729...
		

Crossrefs

Cf. A343964 (rhombicuboctahedron surface area).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 4+10*Sqrt(2)/3;
  • Mathematica
    RealDigits[N[4 + 10*Sqrt[2]/3, 100]][[1]] (* Wesley Ivan Hurt, Nov 12 2022 *)

A377299 Decimal expansion of the volume of a truncated cube with unit edge length.

Original entry on oeis.org

1, 3, 5, 9, 9, 6, 6, 3, 2, 9, 1, 0, 7, 4, 4, 4, 3, 5, 6, 1, 0, 7, 4, 5, 4, 7, 3, 7, 9, 6, 4, 5, 2, 5, 7, 6, 9, 9, 9, 9, 1, 8, 0, 2, 0, 8, 5, 0, 9, 2, 4, 2, 4, 3, 4, 1, 4, 9, 1, 1, 7, 2, 1, 1, 0, 6, 2, 3, 4, 1, 8, 2, 3, 2, 8, 2, 3, 1, 6, 6, 1, 8, 1, 3, 0, 1, 8, 0, 8, 4
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			13.599663291074443561074547379645257699991802085...
		

Crossrefs

Cf. A377298 (surface area), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).
Cf. A131594.

Programs

  • Mathematica
    First[RealDigits[7 + 14*Sqrt[2]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCube", "Volume"], 10, 100]]

Formula

Equals 7 + (14/3)*sqrt(2) = 7 + 14*A131594.

A274542 Decimal expansion of exp(sqrt(2)/3).

Original entry on oeis.org

1, 6, 0, 2, 2, 4, 2, 9, 9, 7, 2, 0, 3, 5, 6, 0, 1, 5, 0, 9, 9, 5, 1, 7, 7, 7, 7, 2, 2, 2, 8, 6, 7, 8, 7, 5, 8, 5, 1, 2, 9, 6, 1, 6, 8, 2, 9, 5, 4, 5, 4, 7, 1, 8, 7, 4, 2, 6, 8, 2, 2, 4, 0, 5, 3, 0, 9, 1, 0, 0, 1, 6, 9, 9, 4, 9, 0, 4, 1, 9, 1, 9, 5, 8, 2
Offset: 1

Views

Author

Johannes W. Meijer, Jun 27 2016

Keywords

Comments

Define P(n) = (1/n)*(sum(x(n-k)*P(k), k=0..n-1)), n >= 1 and P(0) =1 with x(3) = (1 + sqrt(2)) and x(n) = 1 for all other n. We find that C2 = limit(P(n), n -> infinity) = exp(sqrt(2)/3).
The structure of the n!*P(n) formulas leads to the multinomial coefficients A036039.

Examples

			c = 1.6022429972035601509951777722286787585129616829545471874……
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Exp[Sqrt[2]/3]; // G. C. Greubel, Aug 19 2018
  • Maple
    Digits := 85: evalf(exp(sqrt(2)/3)); # End program 1.
    P := proc(n) : if n=0 then 1 else P(n) := expand((1/n)*(add(x(n-k)*P(k), k=0..n-1))) fi; end: x := proc(n): if n=3 then (sqrt(2)+1) else 1 fi: end: Digits := 56; evalf(P(120)); # End program 2.
  • Mathematica
    First@ RealDigits@ N[Exp[Sqrt[2]/3], 85] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    my(x=exp(sqrt(2)/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", ")) \\ Felix Fröhlich, Jun 27 2016
    

Formula

c = exp(sqrt(2)/3)
c = limit(P(n), n -> infinity) with P(n) = (1/n)*(sum(x(n-k)*P(k), k=0..n-1)) for n >= 1, and P(0) =1, with x(3) = (1 + sqrt(2)), the silver mean A014176, and x(n) = 1 for all other n.
Showing 1-10 of 14 results. Next