cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A378352 Decimal expansion of the volume of a (small) triakis octahedron with unit shorter edge length.

Original entry on oeis.org

2, 9, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0, 9, 5, 0, 4, 8, 8, 0, 1, 6, 8, 8, 7, 2, 4, 2, 0, 9, 6, 9, 8, 0, 7, 8, 5, 6, 9, 6, 7, 1, 8, 7, 5, 3, 7, 6, 9, 4, 8, 0, 7, 3, 1, 7, 6, 6, 7, 9, 7, 3, 7, 9, 9, 0, 7, 3, 2, 4, 7, 8, 4, 6, 2, 1, 0, 7, 0, 3, 8, 8, 5, 0, 3, 8, 7, 5, 3
Offset: 1

Views

Author

Paolo Xausa, Nov 23 2024

Keywords

Comments

The (small) triakis octahedron is the dual polyhedron of the truncated cube.

Examples

			2.9142135623730950488016887242096980785696718753769...
		

Crossrefs

Cf. A378351 (surface area), A378353 (inradius), A201488 (midradius), A378354 (dihedral angle).
Cf. A377299 (volume of a truncated cube with unit edge).
Cf. A156035.
Essentially the same as A002193 and A188582.

Programs

  • Mathematica
    First[RealDigits[Sqrt[2] + 3/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisOctahedron", "Volume"], 10, 100]]

Formula

Equals sqrt(2) + 3/2 = A002193 + 3/2.
Equals A156035/2. - Hugo Pfoertner, Nov 24 2024

A377298 Decimal expansion of the surface area of a truncated cube with unit edge length.

Original entry on oeis.org

3, 2, 4, 3, 4, 6, 6, 4, 3, 6, 3, 6, 1, 4, 8, 9, 5, 1, 7, 2, 6, 7, 5, 1, 5, 7, 3, 7, 3, 5, 2, 8, 1, 2, 1, 6, 7, 6, 7, 2, 1, 6, 7, 3, 0, 1, 2, 1, 4, 4, 1, 3, 8, 1, 3, 4, 2, 3, 1, 7, 7, 0, 8, 1, 4, 7, 9, 2, 6, 5, 5, 7, 7, 5, 3, 6, 2, 8, 8, 4, 5, 4, 0, 3, 6, 6, 9, 4, 2, 7
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			32.4346643636148951726751573735281216767216730121...
		

Crossrefs

Cf. A377299 (volume), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).

Programs

  • Mathematica
    First[RealDigits[2*(6 + Sqrt[72] + Sqrt[3]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCube", "SurfaceArea"], 10, 100]]

Formula

Equals 2*(6 + 6*sqrt(2) + sqrt(3)) = 2*(6 + 2*A002193 + A002194) = 12 + 2*A010524 + A010469.

A386459 Decimal expansion of the volume of an augmented truncated cube with unit edges.

Original entry on oeis.org

1, 5, 5, 4, 2, 4, 7, 2, 3, 3, 2, 6, 5, 6, 5, 0, 6, 9, 2, 6, 9, 4, 2, 3, 3, 9, 8, 6, 2, 4, 5, 1, 7, 2, 3, 0, 8, 5, 7, 0, 4, 9, 1, 6, 6, 6, 8, 6, 7, 7, 0, 5, 6, 3, 9, 0, 2, 7, 5, 6, 2, 5, 2, 6, 9, 2, 8, 3, 9, 0, 6, 5, 5, 1, 7, 9, 7, 9, 0, 4, 2, 0, 7, 2, 0, 2, 0, 6, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Jul 22 2025

Keywords

Comments

The augmented truncated cube is Johnson solid J_66.

Examples

			15.5424723326565069269423398624517230857049...
		

Crossrefs

Cf. A386460 (surface area).

Programs

  • Mathematica
    First[RealDigits[8 + 16*Sqrt[2]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J66", "Volume"], 10, 100]]

Formula

Equals 8 + 16*sqrt(2)/3 = 8 + 16*A131594.
Equals A377299 + A179587.
Equals the largest root of 9*x^2 - 144*x + 64.

A381686 Decimal expansion of the isoperimetric quotient of a truncated cube.

Original entry on oeis.org

6, 1, 3, 0, 2, 8, 2, 1, 1, 0, 7, 9, 2, 8, 0, 3, 2, 1, 1, 0, 2, 4, 0, 5, 5, 8, 1, 4, 4, 7, 1, 4, 0, 7, 9, 7, 0, 8, 9, 7, 6, 1, 6, 9, 2, 2, 3, 9, 3, 3, 1, 6, 9, 9, 2, 7, 7, 8, 9, 4, 8, 9, 0, 5, 8, 5, 7, 3, 9, 4, 5, 9, 1, 5, 0, 4, 0, 5, 8, 4, 7, 3, 7, 6, 9, 2, 7, 7, 8, 3
Offset: 0

Views

Author

Paolo Xausa, Mar 04 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.

Examples

			0.61302821107928032110240558144714079708976169223933...
		

Crossrefs

Cf. A377298 (surface area), A377299 (volume).

Programs

  • Mathematica
    First[RealDigits[49*Pi*(17 + 12*Sqrt[2])/(2*(6 + 6*Sqrt[2] + Sqrt[3])^3), 10, 100]]

Formula

Equals 36*Pi*A377299^2/(A377298^3).
Equals 49*Pi*(17 + 12*sqrt(2))/(2*(6 + 6*sqrt(2) + sqrt(3))^3) = 49*A000796*A156164/(2*(6 + A010524 + A002194)^3).
Showing 1-4 of 4 results.