cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A338645 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+2,2).

Original entry on oeis.org

1, 3, 9, 29, 78, 207, 526, 1284, 3054, 7084, 16071, 35748, 78167, 168195, 356754, 746772, 1544145, 3157056, 6387114, 12795366, 25397760, 49977262, 97542936, 188912466, 363196750, 693424803, 1315161528, 2478648920, 4643337213, 8648452782, 16019345259, 29515269060, 54104712129
Offset: 0

Views

Author

Ilya Gutkovskiy, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 2, 2], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 2, 2], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 32}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * A027480(d) ) * a(n-k).
a(n) ~ (7/15)^(1/8) * 2^(-21/8) * n^(-5/8) * exp((2/3)*(7/15)^(1/4)*Pi * n^(3/4) + 9*sqrt(15/7)*zeta(3) * sqrt(n) / (2*Pi^2) + ((5/7)^(1/4)*Pi / (2*3^(3/4)) - 1215*(15/7)^(1/4)*zeta(3)^2 / (28*Pi^5)) * n^(1/4) + 54675*zeta(3)^3 / (98*Pi^8) - 45*zeta(3) / (28*Pi^2)). - Vaclav Kotesovec, May 12 2021

A344097 Expansion of Product_{k>=1} (1 + x^k)^binomial(k+4,4).

Original entry on oeis.org

1, 5, 25, 120, 505, 2027, 7740, 28345, 100355, 344815, 1154130, 3773955, 12085125, 37971645, 117258755, 356386016, 1067364240, 3153415695, 9198749905, 26516197720, 75586609016, 213212467695, 595482274750, 1647568369230, 4517987288720, 12284672226583, 33133931688645
Offset: 0

Views

Author

Ilya Gutkovskiy, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 4, 4], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 4, 4], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * A174002(d) ) * a(n-k).

A344098 a(n) = [x^n] Product_{k>=1} (1 + x^k)^binomial(k+n-1,n-1).

Original entry on oeis.org

1, 1, 4, 29, 221, 2027, 21022, 242209, 3060262, 41936745, 618154670, 9735013136, 162892047930, 2882449728121, 53727527279464, 1051276401060921, 21529017626095851, 460231878244308738, 10246160509840187387, 237067632496414877363, 5689786581042000827057, 141415234722601777758232
Offset: 0

Views

Author

Ilya Gutkovskiy, May 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^k)^Binomial[k + n - 1, n - 1], {k, 1, n}], {x, 0, n}], {n, 0, 21}]
    A[n_, k_] := A[n, k] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(j/d + 1) d Binomial[d + k - 1, k - 1], {d, Divisors[j]}] A[n - j, k], {j, 1, n}]]; a[n_] := A[n, n]; Table[a[n], {n, 0, 21}]
Showing 1-3 of 3 results.