A343355 Expansion of Product_{k>=1} 1 / (1 - x^k)^(10^(k-1)).
1, 1, 11, 111, 1166, 12166, 127436, 1332936, 13939651, 145683351, 1521743103, 15886781603, 165770328383, 1728861822083, 18022063489023, 187778810866043, 1955660195168328, 20358764860253028, 211849198103034998, 2203562708619192998, 22911457758236641451, 238129937419462634151
Offset: 0
Keywords
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add( d*10^(d-1), d=numtheory[divisors](j)), j=1..n)/n) end: seq(a(n), n=0..21); # Alois P. Heinz, Apr 12 2021
-
Mathematica
nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(10^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 10^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
Formula
a(n) ~ exp(sqrt(2*n/5) - 1/20 + c/10) * 10^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} 1/(j * (10^(j-1) - 1)). - Vaclav Kotesovec, Apr 12 2021
Comments