A343349
Expansion of Product_{k>=1} 1 / (1 - x^k)^(4^(k-1)).
Original entry on oeis.org
1, 1, 5, 21, 95, 415, 1851, 8155, 36030, 158510, 696502, 3052966, 13359230, 58346206, 254405630, 1107479694, 4813850699, 20894227355, 90567536543, 392066476815, 1695180397145, 7320927664713, 31581573600685, 136094434672509, 585876330191950, 2519701493092958
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*4^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 12 2021
-
nmax = 25; CoefficientList[Series[Product[1/(1 - x^k)^(4^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 4^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343350
Expansion of Product_{k>=1} 1 / (1 - x^k)^(5^(k-1)).
Original entry on oeis.org
1, 1, 6, 31, 171, 921, 5031, 27281, 148101, 801901, 4336902, 23415777, 126254962, 679805112, 3655679442, 19634501447, 105334380517, 564471596667, 3021754455157, 16160029793032, 86339725851558, 460874548444683, 2457961986888773, 13097958657023523, 69740119667456018
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*5^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..24); # Alois P. Heinz, Apr 12 2021
-
nmax = 24; CoefficientList[Series[Product[1/(1 - x^k)^(5^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 5^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 24}]
A343351
Expansion of Product_{k>=1} 1 / (1 - x^k)^(6^(k-1)).
Original entry on oeis.org
1, 1, 7, 43, 280, 1792, 11586, 74550, 479892, 3083640, 19794678, 126908502, 812761299, 5199586119, 33230586285, 212172173565, 1353444677529, 8626044781761, 54931168743703, 349524243121795, 2222294161109422, 14119034725444774, 89639674321304392, 568720801952770012
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*6^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..23); # Alois P. Heinz, Apr 12 2021
-
nmax = 23; CoefficientList[Series[Product[1/(1 - x^k)^(6^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 6^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
A343352
Expansion of Product_{k>=1} 1 / (1 - x^k)^(7^(k-1)).
Original entry on oeis.org
1, 1, 8, 57, 428, 3172, 23689, 176324, 1312550, 9757798, 72480269, 537854094, 3987751860, 29540543908, 218652961074, 1617159619805, 11951595353413, 88264810625245, 651404299886762, 4804261815210433, 35410065096578748, 260832137791524693, 1920169120639498017, 14127684273966098698
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*7^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..23); # Alois P. Heinz, Apr 12 2021
-
nmax = 23; CoefficientList[Series[Product[1/(1 - x^k)^(7^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 7^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
A343353
Expansion of Product_{k>=1} 1 / (1 - x^k)^(8^(k-1)).
Original entry on oeis.org
1, 1, 9, 73, 621, 5229, 44293, 374277, 3162447, 26694159, 225163687, 1897751079, 15983278059, 134519816427, 1131395821587, 9509592524371, 79880259426102, 670590654977718, 5626336598011078, 47179486350900358, 395410837699366686, 3312225325409475038, 27731588831310844302
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*8^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..22); # Alois P. Heinz, Apr 12 2021
-
nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
A343354
Expansion of Product_{k>=1} 1 / (1 - x^k)^(9^(k-1)).
Original entry on oeis.org
1, 1, 10, 91, 865, 8155, 77251, 730435, 6905560, 65233120, 615847378, 5810270782, 54784324495, 516250199827, 4862041512625, 45765734635702, 430560567351208, 4048630897384450, 38051334554031551, 357459295903931045, 3356488167698692226, 31503001136703776561
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
d*9^(d-1), d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..21); # Alois P. Heinz, Apr 12 2021
-
nmax = 21; CoefficientList[Series[Product[1/(1 - x^k)^(9^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 9^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
A343331
Expansion of Product_{k>=1} (1 + x^k)^(10^(k-1)).
Original entry on oeis.org
1, 1, 10, 110, 1145, 12045, 126070, 1319570, 13798710, 144217910, 1506406702, 15726571002, 164096557935, 1711386871635, 17839701265570, 185876723016390, 1935830424374840, 20152131324766520, 209696974024339610, 2181155691766631710, 22678274833738085501, 235704268837407670401
Offset: 0
-
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(10^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..21); # Alois P. Heinz, Apr 12 2021
-
nmax = 21; CoefficientList[Series[Product[(1 + x^k)^(10^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 10^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
Showing 1-7 of 7 results.
Comments