cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A343470 Decimal expansion of Sum_{n>=1} ((-1)^(n-1))*arctan(n)/n.

Original entry on oeis.org

4, 6, 5, 7, 1, 2, 3, 0, 3, 5, 2, 6, 3, 0, 3, 6, 3, 5, 5, 2, 6, 8, 2, 7, 7, 0, 1, 2, 4, 0, 2, 3, 0, 1, 3, 6, 8, 7, 2, 3, 7, 2, 1, 6, 0, 6, 1, 5, 1, 6, 2, 4, 8, 4, 0, 9, 1, 1, 9, 4, 2, 6, 0, 8, 6, 2, 5, 3, 9, 2, 1, 8, 7, 2, 8, 1, 9, 1, 0, 7, 5, 7, 4, 9, 3, 7, 9, 6, 2, 0, 7, 6
Offset: 0

Views

Author

Bernard Schott, Apr 17 2021

Keywords

Comments

The alternating series test shows the series is convergent.

Examples

			0.46571230352630363552682770124023013687237216061516248...
		

Crossrefs

Programs

  • Maple
    evalf(sum(((-1)^(n-1))*arctan(n)/n, n=1..infinity),120);
  • PARI
    sumalt(n=1, (-1)^(n-1)*atan(n)/n) \\ Michel Marcus, Apr 17 2021

Formula

Equals Sum_{n>=1} ((-1)^(n-1))*arctan(n)/n.

A355921 Decimal expansion of Sum_{k>=1} (1/k)*arctan(1/k).

Original entry on oeis.org

1, 4, 0, 5, 8, 6, 9, 2, 9, 8, 2, 8, 7, 7, 8, 0, 9, 1, 1, 2, 5, 5, 3, 9, 8, 6, 1, 7, 5, 6, 6, 5, 1, 4, 7, 2, 3, 1, 2, 1, 4, 4, 2, 1, 9, 0, 9, 1, 9, 1, 4, 4, 3, 5, 8, 8, 0, 8, 1, 3, 4, 9, 2, 0, 5, 1, 9, 4, 8, 9, 2, 8, 6, 0, 9, 2, 1, 5, 5, 3, 4, 1, 0, 7, 8, 5, 6
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2022

Keywords

Examples

			1.40586929828778091125539861...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[ArcTan[1/k]/k, {k, 1, Infinity}], 30], 10, 27][[1]]
  • PARI
    default(realprecision, 200); sumalt(k=1,(-1)^(k+1)*zeta(2*k)/(2*k-1)) \\ Vaclav Kotesovec, Jul 21 2022

Formula

Equals Sum_{k>=1} arccot(k)/k.
Equals Sum_{k>=1} (-1)^(k+1)*zeta(2*k)/(2*k-1).
Equals (1/2) * Integral_{x=0..1} (coth(Pi*x)*Pi/x - 1/x^2) dx.
Equals Integral_{x>=0} Si(x)/(exp(x)-1) dx, where Si(x) is the sine integral function.
Equals -Integral_{x>=0} sin(x)*log(1-exp(-x))/x dx.

Extensions

More terms from Jinyuan Wang, Jul 21 2022
Showing 1-2 of 2 results.