cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343509 a(n) = Sum_{k=1..n} gcd(k, n)^7.

Original entry on oeis.org

1, 129, 2189, 16514, 78129, 282381, 823549, 2113796, 4787349, 10078641, 19487181, 36149146, 62748529, 106237821, 171024381, 270565896, 410338689, 617568021, 893871757, 1290222306, 1802748761, 2513846349, 3404825469, 4627099444, 6103828145, 8094560241
Offset: 1

Views

Author

Seiichi Manyama, Apr 17 2021

Keywords

Comments

In general, for m > 1, if a(n) = Sum_{j=1..n} gcd(j, n)^m, then Sum_{k=1..n} a(k) ~ zeta(m) * n^(m+1) / ((m+1) * zeta(m+1)). - Vaclav Kotesovec, May 20 2021

Crossrefs

Column 7 of A343510.
Cf. A000010, A013954 (sigma_6(n)), A069092, A343521.

Programs

  • Mathematica
    a[n_] := Sum[GCD[k, n]^7, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Apr 18 2021 *)
    f[p_, e_] := p^(e-1)*(p^(6*e+7) - p^(6*e) - p + 1)/(p^6-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k, n)^7);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*d^7);
    
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d, 6));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k*(1+120*x^k+1191*x^(2*k)+2416*x^(3*k)+1191*x^(4*k)+120*x^(5*k)+x^(6*k))/(1-x^k)^8))

Formula

a(n) = Sum_{d|n} phi(n/d) * d^7.
a(n) = Sum_{d|n} mu(n/d) * d * sigma_6(d).
G.f.: Sum_{k >= 1} phi(k) * x^k * (1 + 120*x^k + 1191*x^(2*k) + 2416*x^(3*k) + 1191*x^(4*k) + 120*x^(5*k) + x^(6*k))/(1 - x^k)^8.
Dirichlet g.f.: zeta(s-1) * zeta(s-7) / zeta(s). - Ilya Gutkovskiy, Apr 18 2021
Sum_{k=1..n} a(k) ~ 4725*zeta(7)*n^8 / (4*Pi^8). - Vaclav Kotesovec, May 20 2021
Multiplicative with a(p^e) = p^(e-1)*(p^(6*e+7) - p^(6*e) - p + 1)/(p^6-1). - Amiram Eldar, Nov 22 2022
a(n) = Sum_{1 <= i_1, ..., i_7 <= n} gcd(i_1, ..., i_7, n) = Sum_{d divides n} d * J_7(n/d), where the Jordan totient function J_7(n) = A069092(n). - Peter Bala, Jan 29 2024