cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343525 If n = Product (p_j^k_j) then a(n) = Product (2*p_j^k_j + 1), with a(1) = 1.

Original entry on oeis.org

1, 5, 7, 9, 11, 35, 15, 17, 19, 55, 23, 63, 27, 75, 77, 33, 35, 95, 39, 99, 105, 115, 47, 119, 51, 135, 55, 135, 59, 385, 63, 65, 161, 175, 165, 171, 75, 195, 189, 187, 83, 525, 87, 207, 209, 235, 95, 231, 99, 255, 245, 243, 107, 275, 253, 255, 273, 295, 119, 693, 123, 315, 285, 129, 297, 805
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 18 2021

Keywords

Comments

The unitary analog of A060640.

Crossrefs

Programs

  • Maple
    a:= n-> mul(2*i[1]^i[2]+1, i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Apr 18 2021
  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((2 #[[1]]^#[[2]] + 1) & /@ FactorInteger[n]); Table[a[n], {n, 66}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = 2*f[k,1]^f[k,2]+1; f[k,2]=1); factorback(f); \\ Michel Marcus, Apr 18 2021

Formula

a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * usigma(n/d).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} d * 2^omega(d).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 + 1/p^(s-1) - 2/p^(2*s-1)). - Amiram Eldar, Jul 24 2024