A343541 For n > 1, a(n) is the largest base b <= prime(n)-1 such that the digits of prime(n)-1 in base b contain the digit b-1.
2, 2, 3, 2, 4, 3, 3, 5, 4, 6, 2, 2, 7, 7, 4, 8, 8, 6, 6, 9, 9, 2, 3, 10, 5, 6, 6, 5, 11, 8, 3, 12, 12, 5, 3, 13, 13, 13, 5, 6, 6, 14, 14, 10, 10, 15, 15, 5, 5, 11, 11, 16, 16, 2, 3, 4, 5, 17, 17, 17, 10, 18, 18, 18, 18, 13, 13, 19, 19, 19
Offset: 2
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
f:= proc(n) local p,b,L; p:= ithprime(n); for b from floor((1 + sqrt(4*p - 3))/2) by -1 do L:= convert(p-1,base,b); if member(b-1,L) then return b fi od; end proc: map(f, [$2 .. 100]); # Robert Israel, Dec 10 2024
-
Mathematica
Table[Max@Select[Range[2,Prime@n-1],MemberQ[IntegerDigits[Prime@n-1,#],#-1]&],{n,2,71}] (* Giorgos Kalogeropoulos, Nov 22 2021 *)
-
PARI
a(n) = my(q=prime(n)-1); forstep(b=q, 2, -1, if (vecmax(digits(q, b)) == b-1, return (b))); \\ Michel Marcus, Apr 19 2021
-
Python
import sympy def a_n(N): a_n=[2] for i in sympy.primerange(5, N+1): a_n.append(A338295(i-1)) print(a_n) def A338295(n): checker=0 for b in range(n//2, 1,-1): checker=main_base_check(n, b) if checker!=0: break return checker def main_base_check(m, b): while m!=0: if m%b == b-1: return b m = m//b return 0 a_n(500)
Formula
a(n) <= (1 + sqrt(4*prime(n) - 3))/2 for all n. Prime(n), which is 111 in some base Q, has a(n) = Q+1. Example: 31 = 6*5 + 1 and it is 111 in base 5. - Devansh Singh, Nov 22 2021