A343675
Undulating alternating palindromic primes.
Original entry on oeis.org
2, 3, 5, 7, 101, 181, 383, 727, 787, 929, 10301, 10501, 14341, 16361, 16561, 18181, 30103, 30703, 32323, 36563, 38183, 38783, 70507, 72727, 74747, 78787, 90709, 94949, 96769, 1074701, 1092901, 1212121, 1218121, 1412141, 1616161, 1658561, 1856581, 1878781, 3072703
Offset: 1
16361 is a term as it is a palindromic prime, the digits 1, 6, 3, 6 and 1 have odd and even parity alternately, and also alternately rise and fall.
-
Union@Flatten[{{2,3,5,7},Array[Select[FromDigits/@Riffle@@@Tuples[{Tuples[{1,3,5,7,9},#],Tuples[{0,2,4,6,8},#-1]}],(s=Union@Partition[Sign@Differences@IntegerDigits@#,2];(s=={{1,-1}}||s=={{-1,1}})&&PrimeQ@#&&PalindromeQ@#)&]&,4]}] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
-
from sympy import isprime
def f(w):
for s in w:
for t in range(int(s[-1])+1,10,2):
yield s+str(t)
def g(w):
for s in w:
for t in range(1-int(s[-1])%2,int(s[-1]),2):
yield s+str(t)
A343675_list = [2,3,5,7]
for l in range(1,9):
for d in '1379':
x = d
for i in range(1,l+1):
x = g(x) if i % 2 else f(x)
A343675_list.extend([int(p+p[-2::-1]) for p in x if isprime(int(p+p[-2::-1]))])
y = d
for i in range(1,l+1):
y = f(y) if i % 2 else g(y)
A343675_list.extend([int(p+p[-2::-1]) for p in y if isprime(int(p+p[-2::-1]))])
A343591
Smoothly undulating alternating primes.
Original entry on oeis.org
2, 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 181, 383, 727, 787, 929, 18181, 32323, 72727, 74747, 78787, 94949, 1212121, 1616161, 323232323, 383838383, 727272727, 929292929, 989898989, 12121212121, 14141414141, 32323232323, 383838383838383, 38383838383838383, 72727272727272727
Offset: 1
1616161 is a term as it is prime and the digits 1 and 6 have odd and even parity and alternate.
- Charles W. Trigg, Special Palindromic Primes, Journal of Recreational Mathematics, 4 (July 1971) 169-170.
-
f:= proc(n) local i,a,b,c,d;
c:= add(10^i,i=1..n-1,2);
d:= add(10^i,i=0..n-1,2);
if n = 2 then op(select(isprime,[seq(seq(a*c+b*d, b=[1,3,7,9]),a=[2,4,6,8])]))
else op(select(isprime, [seq(seq(a*c+b*d, a=[0,2,4,6,8]),b=[1,3,7,9])]))
fi
end proc:
f(1):= (2,3,5,7):
map(f, [1,2,seq(i,i=3..17,2)]); # Robert Israel, Nov 09 2023
-
f[o_,e_,n_,m_] := FromDigits @ Riffle[ConstantArray[o,n], ConstantArray[e,n-m]]; seq[n_,m_] := Module[{o = Range[1,9,2], e = Range[0,8,2]}, Select[Union[f @@@ Join[Tuples[{o, e, {n}, {m}}], Tuples[{Rest @ e, o, {n}, {m}}]]], PrimeQ]]; s = seq[1, 1]; Do[s = Join[s, seq[m, Boole[m > 1]]], {m, 1, 10}]; s (* Amiram Eldar, Apr 21 2021 *)
-
from sympy import isprime
def agenthru(maxdigits):
if maxdigits >= 1: yield from [2, 3, 5, 7]
for digits in [2]*(maxdigits >= 2) + list(range(3, maxdigits+1, 2)):
hlf, odd = (digits+1)//2, digits%2
d1range = "1379" if digits%2 == 1 else "123456789"
d2range = "1379" if digits%2 == 0 else "0123456789"
for d1 in d1range:
for d2 in d2range:
if int(d1)%2 == int(d2)%2: continue
t = int("".join([*sum(zip(d1*hlf, d2*(digits-hlf)), ())]+[d1*odd]))
if isprime(t): yield t
print([p for p in agenthru(17)]) # Michael S. Branicky, Apr 21 2021
A343676
Number of n-digit undulating alternating primes.
Original entry on oeis.org
4, 9, 23, 49, 175, 321, 1189, 3025, 12111, 28492, 113409, 251513, 1068440, 2629980, 11690210, 28498852, 128871588, 298890814, 1309837146
Offset: 1
-
def f(w):
for s in w:
for t in range(int(s[-1])+1,10,2):
yield s+str(t)
def g(w):
for s in w:
for t in range(1-int(s[-1])%2,int(s[-1]),2):
yield s+str(t)
def A343676(n):
c = 0
for d in '123456789':
x = d
for i in range(1,n):
x = g(x) if i % 2 else f(x)
c += sum(1 for p in x if isprime(int(p)))
if n > 1:
y = d
for i in range(1,n):
y = f(y) if i % 2 else g(y)
c += sum(1 for p in y if isprime(int(p)))
return c
A343677
Number of (2n+1)-digit undulating alternating palindromic primes.
Original entry on oeis.org
4, 6, 19, 34, 100, 241, 697, 1779, 6590, 16585, 57237, 179291, 591325, 1707010, 6520756, 18271423, 65212230, 210339179, 706823539
Offset: 0
-
from sympy import isprime
def f(w):
for s in w:
for t in range(int(s[-1])+1,10,2):
yield s+str(t)
def g(w):
for s in w:
for t in range(1-int(s[-1])%2,int(s[-1]),2):
yield s+str(t)
def A343677(n):
if n == 0:
return 4
c = 0
for d in '1379':
x = d
for i in range(1,n+1):
x = g(x) if i % 2 else f(x)
c += sum(1 for p in x if isprime(int(p+p[-2::-1])))
y = d
for i in range(1,n+1):
y = f(y) if i % 2 else g(y)
c += sum(1 for p in y if isprime(int(p+p[-2::-1])))
return c
Showing 1-4 of 4 results.
Comments