A343666 Number of partitions of an n-set without blocks of size 6.
1, 1, 2, 5, 15, 52, 202, 870, 4084, 20727, 112825, 654546, 4026487, 26145511, 178550986, 1278168860, 9564026947, 74615547996, 605593775899, 5103054929621, 44564754448972, 402677613100491, 3759094788129312, 36205919126040190, 359340174509911325, 3670825700549853053
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add( `if`(j=6, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
Mathematica
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^6/6!], {x, 0, nmax}], x] Range[0, nmax]! Table[n! Sum[(-1)^k BellB[n - 6 k]/((n - 6 k)! k! (6!)^k), {k, 0, Floor[n/6]}], {n, 0, 25}] a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 6, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
Formula
E.g.f.: exp(exp(x) - 1 - x^6/6!).
a(n) = n! * Sum_{k=0..floor(n/6)} (-1)^k * Bell(n-6*k) / ((n-6*k)! * k! * (6!)^k).