cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343667 Number of partitions of an n-set without blocks of size 7.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4132, 21075, 115375, 673620, 4172413, 27296089, 187891174, 1356343385, 10238632307, 80615222404, 660560758879, 5621465069117, 49594663447612, 452846969975391, 4273130715906123, 41612346388251187, 417668648929556073, 4315893703814296053
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          `if`(j=7, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 25 2021
  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^7/7!], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Sum[(-1)^k BellB[n - 7 k]/((n - 7 k)! k! (7!)^k), {k, 0, Floor[n/7]}], {n, 0, 25}]
    a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 7, 0, Binomial[n - 1, k - 1]  a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]

Formula

E.g.f.: exp(exp(x) - 1 - x^7/7!).
a(n) = n! * Sum_{k=0..floor(n/7)} (-1)^k * Bell(n-7*k) / ((n-7*k)! * k! * (7!)^k).