A343671 Number of partitions of an n-set without blocks of size 10.
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115974, 678559, 4213465, 27643007, 190884307, 1382802389, 10478516523, 82847813908, 681895648039, 5830788687491, 51702731250650, 474630475600569, 4503991075480297, 44120379612630694, 445584481578266277, 4634070027874688433
Offset: 0
Keywords
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(`if`( j=10, 0, a(n-j)*binomial(n-1, j-1)), j=1..n)) end: seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2023
-
Mathematica
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^10/10!], {x, 0, nmax}], x] Range[0, nmax]! Table[n! Sum[(-1)^k BellB[n - 10 k]/((n - 10 k)! k! (10!)^k), {k, 0, Floor[n/10]}], {n, 0, 25}] a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 10, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
Formula
E.g.f.: exp(exp(x) - 1 - x^10/10!).
a(n) = n! * Sum_{k=0..floor(n/10)} (-1)^k * Bell(n-10*k) / ((n-10*k)! * k! * (10!)^k).