A343698
a(n) is the number of preference profiles in the stable marriage problem with n men and n women such that there are n pairs of soulmates (people who rank each other first).
Original entry on oeis.org
1, 2, 384, 40310784, 7608405715845120, 6419592322744320000000000000, 50709051409862934701619019776000000000000000, 6988904507653043786857875068352862005134308147200000000000000000
Offset: 1
For n = 3, there are 3! = 6 ways to pair the men and women into soulmate pairs, then 2! ways to finish each person's preference profile, making 6 * 2!^6 = 384 ways to set up the preference profiles.
- Michael De Vlieger, Table of n, a(n) for n = 1..23
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A284458
Number of pairs (f,g) of endofunctions on [n] such that the composite function gf has no fixed point.
Original entry on oeis.org
1, 0, 2, 156, 16920, 2764880, 650696400, 210105425628, 89425255439744, 48588905856409920, 32845298636854828800, 27047610425293718239100, 26664178085975252011318272, 31009985808408471580603417296, 42017027730087624384021945067520
Offset: 0
For two boys A,B and two girls A',B', the a(2) possibilities are:
A loves A' who loves B who loves B' who loves A;
A loves B' who loves B who loves A' who loves A.
-
a:=n->add((-1)^k*binomial(n,k)^2*k!*n^(2*(n-k)),k=0..n):
seq(a(n),n=0..15);
-
Table[Sum[(-1)^k Binomial[n,k]^2 * k! * n^(2*(n - k)), {k, 0, n}], {n, 1, 15}] (* Indranil Ghosh, Mar 27 2017 *)
Table[HypergeometricU[-n, 1, n^2], {n, 1, 15}] (* Jean-François Alcover, Mar 29 2017 *)
-
a(n) = sum(k=0, n, (-1)^k * binomial(n,k)^2 * k! * n^(2*(n-k))); \\ Michel Marcus, Apr 04 2017
A343699
a(n) is the number of preference profiles in the stable marriage problem with n men and n women with n - 1 pairs of soulmates (people who rank each other first).
Original entry on oeis.org
0, 12, 9216, 2418647040, 913008685901414400, 1348114387776307200000000000000, 17038241273713946059743990644736000000000000000, 3522407871857134068576369034449842450587691306188800000000000000000
Offset: 1
When n = 2, there are 2 ways to pick the man in the soulmate pair and 2 ways to pick the woman in the soulmate pair. After this, the soulmate's preference profiles are fixed. There are 4 ways to complete the profiles for the other two people, but 1 of the ways creates a second pair of soulmates, which is forbidden. Thus, there are 12 profiles with exactly one pair of soulmates.
- Michael De Vlieger, Table of n, a(n) for n = 1..23
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A344663
a(n) is the number of preference profiles in the stable marriage problem with n men and n women where the men's preferences form a Latin square when arranged in a matrix, and no man and woman rank each other first.
Original entry on oeis.org
0, 2, 768, 60466176, 1315033086689280, 37924385587200000000000000, 1726298879786383239996474654720000000000, 261072919520121696668385285116754694244904468480000000000, 208836950100011929062766575947297434628338701720339215752571230617600000000000, 1378135848291144955393621267341374054991268978878673434553714544944450408726397427961036800000000000000
Offset: 1
For n = 3, there are A002860(3) = 12 ways to set up the men's preference profiles, where A002860(n) is the number of Latin squares of order n. Then, since the women can't rank the men who ranked them first as their first preference, there are 2^3 = 8 ways to set up the women's first preferences, and then 2!^3 = 8 ways to finish the women's profiles. So, A344663(3) = 12 * 8 * 8 = 768 preference profiles.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A350558
a(n) = (n-1)!^(2n).
Original entry on oeis.org
1, 1, 64, 1679616, 63403380965376, 8916100448256000000000000, 10061319724179153710638694400000000000000, 173335925289013982808975076100021379095592960000000000000000, 79317573895713454077105543742169655162315106629579798748776628224000000000000000000
Offset: 1
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
A360213
Number of distinct stable marriage problem instances up to gender exchange.
Original entry on oeis.org
1, 10, 23436, 55037822976, 309586821132441600000, 9704204980882671472665034752000000, 3411909590124519376908837990487929799751761920000000, 24394862766922609598505096548473341484170343775734092352694570188800000000
Offset: 1
For order 2 we have A185141(2) = 16 instances that can be arranged in a 4 X 4 square with A000217(4) = (4 * 5) / 2 = 10 distinct instances up to gender exchange in the upper triangular region including the diagonal. So a(2) = 10.
Showing 1-6 of 6 results.
Comments