A343705 Numbers that are the sum of five positive cubes in exactly three ways.
766, 810, 827, 829, 865, 883, 981, 1018, 1025, 1044, 1070, 1105, 1108, 1142, 1145, 1161, 1168, 1226, 1233, 1259, 1289, 1350, 1368, 1424, 1431, 1439, 1441, 1457, 1487, 1492, 1494, 1529, 1531, 1538, 1550, 1555, 1568, 1583, 1587, 1592, 1593, 1594, 1609, 1611, 1613, 1639, 1648, 1665, 1672, 1674, 1688, 1707, 1711
Offset: 1
Examples
827 is a term of this sequence because 827 = 1^3 + 4^3 + 5^3 + 5^3 + 8^3 = 2^3 + 2^3 + 5^3 + 7^3 + 7^3 = 2^3 + 3^3 + 4^3 + 6^3 + 8^3.
References
- R. C. Vaughan, The Hardy-Littlewood Method, Cambridge University Press, 1981.
- R. C. Vaughan, Trevor Wooley (2002), Waring's Problem: A Survey. In Michael A. Bennet, Bruce C. Berndt, Nigel Boston, Harold G. Diamond, Adolf J. Hildebrand, Walter Philipp (eds.). Number Theory for the Millennium. III. Natick, MA: A. K. Peters, pp. 301-340.
Links
- David Consiglio, Jr. and Sean A. Irvine, Table of n, a(n) for n = 1..18984
- Jean-Marc Deshouillers, François Hennecart, and Bernard Landreau, 7373170279850, Math. Comp. 69 (2000), pp. 421-439. Appendix by I. Gusti Putu Purnaba.
Crossrefs
Programs
-
Mathematica
Select[Range@2000,Length@Select[PowersRepresentations[#,5,3],FreeQ[#,0]&]==3&] (* Giorgos Kalogeropoulos, Apr 26 2021 *)
-
Python
from itertools import combinations_with_replacement as cwr from collections import defaultdict keep = defaultdict(lambda: 0) power_terms = [x**3 for x in range(1,50)]#n for pos in cwr(power_terms,5):#m tot = sum(pos) keep[tot] += 1 rets = sorted([k for k,v in keep.items() if v == 3])#s for x in range(len(rets)): print(rets[x])
Comments