A343732 Numbers k at which tau(k^k) is a prime power, where tau is the number-of-divisors function A000005.
2, 3, 4, 6, 7, 8, 9, 10, 15, 22, 26, 30, 31, 36, 42, 46, 58, 66, 70, 78, 82, 102, 106, 121, 127, 130, 138, 166, 178, 190, 210, 222, 226, 238, 255, 262, 282, 310, 330, 346, 358, 366, 382, 418, 430, 438, 441, 442, 462, 466, 478, 498, 502, 511, 546, 562, 570, 586
Offset: 1
Keywords
Examples
9^9 = (3^2)^9 = 3^18 has 19 = 19^1 divisors, so 9 is a term. 10^10 = 2^10 * 5^10 has 121 = 11^2 divisors, so 10 is a term. 11^11 has 12 = 2^2 * 3^1 divisors, so 11 is not a term.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
a={}; For[k=1,k<600,k++,If[PrimePowerQ[DivisorSigma[0,k^k]],AppendTo[a,k]]]; a (* Stefano Spezia, Jun 02 2021 *) Select[Range[600],PrimePowerQ[DivisorSigma[0,#^#]]&] (* Harvey P. Dale, Oct 29 2022 *)
-
PARI
isok(k) = isprimepower(numdiv(k^k)); \\ Michel Marcus, Jun 02 2021
-
Python
from functools import reduce from operator import mul from sympy import factorint A343732_list = [n for n in range(2,10**3) if len(factorint(reduce(mul,(n*d+1 for d in factorint(n).values())))) == 1] # Chai Wah Wu, Jun 03 2021